【題目】已知函數(shù),函數(shù)的圖象在處的切線與直線平行.

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)若函數(shù)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;

(Ⅲ)設(shè)()是函數(shù)的兩個(gè)極值點(diǎn),若,試求的最小值.

【答案】(Ⅰ)1; (Ⅱ); (Ⅲ).

【解析】

(Ⅰ)利用導(dǎo)數(shù)的幾何意義,結(jié)合平行線的斜率相等,f′(1)=2,即可求得實(shí)數(shù)a的值;

(Ⅱ)由題意知g′(x)<0在(0,+∞)上有解,結(jié)合二次函數(shù)的圖象和性質(zhì),求解b的取值范圍;

(Ⅲ)結(jié)合(Ⅱ),可知兩個(gè)極值點(diǎn),求出,令t,構(gòu)造出函數(shù);再根據(jù),求得函數(shù)的定義域,進(jìn)而利用導(dǎo)數(shù)求的最小值即可.

(Ⅰ)∵,∴.

∵切線與直線平行,

,∴.

(Ⅱ)易得(),

().

由題意,知函數(shù)存在單調(diào)遞減區(qū)間,等價(jià)于上有解,

,則故可設(shè).

,所以,要使上有解,

則只須, 即,

故所求實(shí)數(shù)的取值范圍是.

(Ⅲ)由(Ⅱ)知,,

,得.

()是函數(shù)的兩個(gè)極值點(diǎn),

()是方程的兩個(gè)根,

,.

,∵,∴

.

,∴

化簡整理,得,解得.

,∴.

,∴函數(shù)單調(diào)遞減,

.

的最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下幾個(gè)命題中:

①線性回歸直線方程恒過樣本中心;

②用相關(guān)指數(shù)可以刻畫回歸的效果,值越小說明模型的擬合效果越好;

③隨機(jī)誤差是引起預(yù)報(bào)值和真實(shí)值之間存在誤差的原因之一,其大小取決于隨機(jī)誤差的方差;

④在含有一個(gè)解釋變量的線性模型中,相關(guān)指數(shù)等于相關(guān)系數(shù)的平方.

其中真命題的個(gè)數(shù)為(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地下車庫在排氣扇發(fā)生故障的情況下,測得空氣中一氧化碳含量達(dá)到了危險(xiǎn)狀態(tài),經(jīng)搶修,排氣扇恢復(fù)正常.排氣后,測得車庫內(nèi)的一氧化碳濃度為,繼續(xù)排氣,又測得濃度為,經(jīng)檢測知該地下車庫一氧化碳濃度與排氣時(shí)間存在函數(shù)關(guān)系:,為常數(shù))。

(1)求,的值;

(2)若地下車庫中一氧化碳濃度不高于為正常,問至少排氣多少分鐘,這個(gè)地下車庫中的一氧化碳含量才能達(dá)到正常狀態(tài)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列五個(gè)命題,其中正確的命題序號(hào)是________.

①當(dāng)時(shí),函數(shù)取得最大值,則

②已知菱形,的中點(diǎn),且,則菱形面積的最大值為12

③已知二次函數(shù),如果時(shí),則實(shí)數(shù)的取值范圍是

④在三棱錐中,,點(diǎn)分別是的中點(diǎn),則異面直線所成的角的余弦值是

⑤數(shù)列滿足,且數(shù)列的前2010項(xiàng)的和為403,記數(shù)列,是數(shù)列的前項(xiàng)和,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求證:

(2)若,恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2-2x+1.

(1)試討論函數(shù)f(x)的單調(diào)性;

(2)若a≤1,且f(x)在[1,3]上的最大值為M(a),最小值為N(a),令g(a)=M(a)-N(a),求g(a)的表達(dá)式;

(3)在(2)的條件下,求證:g(a)≥.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)=Asin(A>0,>0,<)在處取得最大值2,其圖象與x軸的相鄰兩個(gè)交點(diǎn)的距離為。

(1)求的解析式;

(2)求函數(shù) 的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以點(diǎn)為圓心的圓過原點(diǎn).

1)設(shè)直線與圓交于點(diǎn),若,求圓的方程;

2)在(1)的條件下,設(shè),且分別是直線和圓上的動(dòng)點(diǎn),求的最大值及此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是兩個(gè)不重合的平面,下列選項(xiàng)中,一定能得出平面與平面平行的是( )

A.平面內(nèi)有一條直線與平面平行

B.平面內(nèi)有兩條直線與平面平行

C.平面內(nèi)有一條直線與平面內(nèi)的一條直線平行

D.平面與平面不相交

查看答案和解析>>

同步練習(xí)冊答案