【題目】已知函數(shù).

(Ⅰ)若函數(shù)有兩個零點(diǎn),求的取值范圍;

(Ⅱ)證明:當(dāng)時,關(guān)于的不等式上恒成立.

【答案】(1)(2)

【解析】試題分析:(Ⅰ)由題意,可利用導(dǎo)數(shù)法來進(jìn)行求解,由,轉(zhuǎn)換為,即將問題轉(zhuǎn)化為曲線與直線有兩交點(diǎn),求的取值范圍,構(gòu)造函數(shù),求函數(shù)的單調(diào)區(qū)間,再求函數(shù)的最值,從而問題可得解;

(Ⅱ)由題意,將問題轉(zhuǎn)化為:當(dāng)時,不等式上恒成立,可構(gòu)造函數(shù),并證明其最大值在區(qū)間上成立即可.

試題解析:(Ⅰ)令,∴;

,∴,

,解得,令,解得

則函數(shù)上單調(diào)遞增,在上單調(diào)遞減,∴.

要使函數(shù)有兩個零點(diǎn),則函數(shù)的圖象與有兩個不同的交點(diǎn),

,即實(shí)數(shù)的取值范圍為.

(Ⅱ)∵,∴.

設(shè), ,∴

設(shè),∴,則上單調(diào)遞增,

, ,

,使得,即,∴.

當(dāng)時, ;當(dāng)時, ;

∴函數(shù)上單調(diào)遞增,在上單調(diào)遞減,

.

設(shè),∴

當(dāng)時, 恒成立,則上單調(diào)遞增,

,即當(dāng)時,

∴當(dāng)時,關(guān)于的不等式上恒成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式ax2﹣bx﹣1>0的解集是 ,則不等式x2﹣bx﹣a≥0的解集是( )
A.{x|2<x<3}
B.{x|x≤2或x≥3}
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)甲,乙兩種芯片,其質(zhì)量按測試指標(biāo)劃分為:指標(biāo)大于或等于82為合格品,小于82為次品.現(xiàn)隨機(jī)抽取這兩種芯片各100件進(jìn)行檢測,檢測結(jié)果統(tǒng)計如表:

測試指標(biāo)

[70,76)

[76,82)

[82,88)

[88,94)

[94,100]

芯片甲

8

12

40

32

8

芯片乙

7

18

40

29

6


(1)試分別估計芯片甲,芯片乙為合格品的概率;
(2)生產(chǎn)一件芯片甲,若是合格品可盈利40元,若是次品則虧損5元;生產(chǎn)一件芯片乙,若是合格品可盈利50元,若是次品則虧損10元.在(I)的前提下,
(i)記X為生產(chǎn)1件芯片甲和1件芯片乙所得的總利潤,求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(ii)求生產(chǎn)5件芯片乙所獲得的利潤不少于140元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)F1(﹣c,0),F(xiàn)2(c,0)分別是橢圓C: =1(a>1)的左、右焦點(diǎn),P為橢圓C上任意一點(diǎn),且 的最小值為0.

(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點(diǎn),點(diǎn)M,N是直線l上的兩點(diǎn),且F1M⊥l,F(xiàn)2N⊥l,求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4﹣4:坐標(biāo)系與參數(shù)方程.
極坐標(biāo)系與直角坐標(biāo)系xoy有相同的長度單位,以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,已知曲線C1的極坐標(biāo)方程為ρ=4cosθ,曲線C2的參數(shù)方程為 (t為參數(shù),0≤α<π),射線θ=φ,θ=φ+ ,θ=φ﹣ 與曲線C1交于(不包括極點(diǎn)O)三點(diǎn)A、B、C.
(1)求證:|OB|+|OC|= |OA|;
(2)當(dāng)φ= 時,B,C兩點(diǎn)在曲線C2上,求m與α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為,它的一個頂點(diǎn)恰好是拋物線x2=4y的焦點(diǎn).

(1)求橢圓C的方程;

(2)直線x=2與橢圓交于P,Q兩點(diǎn),P點(diǎn)位于第一象限,A,B是橢圓上位于直線x=2兩側(cè)的動點(diǎn).

若直線AB的斜率為,求四邊形APBQ面積的最大值;

當(dāng)點(diǎn)A,B運(yùn)動時,滿足∠APQ=∠BPQ,問直線AB的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知首項為﹣6的等差數(shù)列{an}的前7項和為0,等比數(shù)列{bn}滿足b3=a7 , |b3﹣b4|=6.
(1)求數(shù)列{bn}的通項公式;
(2)是否存在正整數(shù)k,使得數(shù)列{ }的前k項和大于 ?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠A=60°,AB=3,AC=2.若 =2 , (λ∈R),且 =﹣4,則λ的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A(1,0,0),B(0,1,0),C(0,0,2).

(1),求點(diǎn)D的坐標(biāo);

(2)問是否存在實(shí)數(shù)α,β,使得成立?若存在,求出α,β的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案