【題目】(本小題滿分14分)如圖,在三棱錐P- ABC中,已知平面PBC平面ABC

1)若ABBC,CPPB,求證:CPPA

2)若過點A作直線平面ABC,求證: //平面PBC

【答案】1)詳見解析,(2)詳見解析

【解析】試題分析】1)依據(jù)題設借助面面垂直的性質(zhì)定理證明平面平面,然后運用線面垂直的性質(zhì)定理證明;(2)借助題設條件先證明平面,進而確定,然后再運用線面平行的性質(zhì)定理推證:

證明:(1)因為平面 平面 ,平面 平面, 平面, ,所以平面.因為平面,所以 .又因為 平面所以平面又因為平面所以.

(2)在平面內(nèi)過點垂足為因為平面平面,

又平面平面 平面,所以平面平面,所以平面 平面,所以平面.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】從某校高三上學期期末數(shù)學考試成績中,隨機抽取了名學生的成績得到如圖所示的頻率分布直方圖:

(1)根據(jù)頻率分布直方圖,估計該校高三學生本次數(shù)學考試的平均分;

(2)若用分層抽樣的方法從分數(shù)在的學生中共抽取人,該人中成績在的有幾人?

(3)在(2)中抽取的人中,隨機抽取人,求分數(shù)在人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為自然對數(shù)的底數(shù)).

(1)若處的切線過點,求實數(shù)的值;

(2)當時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知多面體中,均為正三角形,平面平面,,.

(Ⅰ)求證:平面;

(Ⅱ)若,求該多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)判斷函數(shù)的單調(diào)性;

(2)當上的最小值是時,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角梯形PBCD中, ,APD的中點,如下左圖。將沿AB折到的位置,使,點ESD上,且,如下圖。

1)求證: 平面ABCD;

2)求二面角E—AC—D的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】邗江中學高二年級某班某小組共10人,利用寒假參加義工活動,已知參加義工活動次數(shù)為1,2,3的人數(shù)分別為3,3,4.現(xiàn)從這10人中選出2人作為該組代表參加座談會.

(1)記“選出2人參加義工活動的次數(shù)之和為4”為事件,求事件發(fā)生的概率;

(2)設為選出2人參加義工活動次數(shù)之差的絕對值,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設X~N(μ1,),Y~N(μ2,),這兩個正態(tài)分布密度曲線如圖所示,下列結(jié)論中正確的是 (  )

A. P(Y≥μ2)≥P(Y≥μ1)

B. P(X≤σ2)≤P(X≤σ1)

C. 對任意正數(shù)t,P(X≥t)≥P(Y≥t)

D. 對任意正數(shù)t,P(X≤t)≥P(Y≤t)

查看答案和解析>>

同步練習冊答案