【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AB=2BB1=2BC,E為D1C1的中點(diǎn),連結(jié)ED,EC,EB和DB.
(Ⅰ)證明:A1D1∥平面EBC;
(Ⅱ)證明:平面EDB⊥平面EBC.

【答案】證明:(Ⅰ)在長方體ABCD﹣A1B1C1D1中,
∴A1D1∥AD∥BC
∵A1D1∥BC,A1D1平面EBC,BC平面EBC
∴A1D1∥平面EBC
(Ⅱ)BB1=BC=a則AB=2a且 ,∴DE2+EC2=4a2=DC2 , ∴DE⊥EC…(10分) ,DB2=DC2+BC2=5a2 ,
又ED2=2a2 , ∴DE2+EB2=DB2 , ∴DE⊥EB
所以DE⊥平面EBC,DE平面EBD
所以平面EDB⊥平面EBC
【解析】(Ⅰ)證明:A1D1∥BC,即可證明A1D1∥平面EBC;(Ⅱ)證明:DE⊥平面EBC,即可證明平面EDB⊥平面EBC.
【考點(diǎn)精析】利用直線與平面平行的判定和平面與平面垂直的判定對題目進(jìn)行判斷即可得到答案,需要熟知平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線),焦點(diǎn)到準(zhǔn)線的距離為,過點(diǎn)作直線交拋物線于點(diǎn)(點(diǎn)在第一象限).

()若點(diǎn)焦點(diǎn)重合,且弦長,求直線的方程;

()若點(diǎn)關(guān)于軸的對稱點(diǎn)為,直線x軸于點(diǎn),且,求證:點(diǎn)B的坐標(biāo)是,并求點(diǎn)到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大學(xué)生趙敏利用寒假參加社會實(shí)踐,對機(jī)械銷售公司7月份至12月份銷售某種機(jī)械配件的銷售量及銷售單價(jià)進(jìn)行了調(diào)查,銷售單價(jià)和銷售量之間的一組數(shù)據(jù)如下表所示:

月份

7

8

9

10

11

12

銷售單價(jià)(元)

9

9.5

10

10.5

11

8

銷售量(件)

11

10

8

6

5

14

(1)根據(jù)7至11月份的數(shù)據(jù),求出關(guān)于的回歸直線方程;

(2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過0.5元,則認(rèn)為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?

(3)預(yù)計(jì)在今后的銷售中,銷售量與銷售單價(jià)仍然服從(1)中的關(guān)系,若該種機(jī)器配件的成本是2.5元/件,那么該配件的銷售單價(jià)應(yīng)定為多少元才能獲得最大利潤?(注:利潤=銷售收入-成本).

 參考公式:回歸直線方程,其中,參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若鈍角三角形的三邊長和面積都是整數(shù),則稱這樣的三角形為“鈍角整數(shù)三角形”,下列選項(xiàng)中能構(gòu)成一個(gè)“鈍角整數(shù)三角形”三邊長的是(
A.2,3,4
B.2,4,5
C.5,5,6
D.4,13,15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 滿足3an﹣2Sn﹣1=0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)bn= ,數(shù)列{bn}的前n項(xiàng)和為Tn , 求f(n)= (n∈N+)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;

(2)曲線相交于兩點(diǎn),求過兩點(diǎn)且面積最小的圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市有大型超市200家、中型超市400家、小型超市1400 家.為掌握各類超市的營業(yè)情況,現(xiàn)按分層抽樣方法抽取一個(gè)容量為100的樣本,應(yīng)抽取中型超市(
A.70家
B.50家
C.20家
D.10家

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高二年級學(xué)業(yè)水平測試的學(xué)生中抽出80名學(xué)生,其數(shù)學(xué)成績(均為整數(shù))的頻率分布直方圖如圖,估計(jì)這次測試中數(shù)學(xué)成績的平均分、眾數(shù)、中位數(shù)分別是(

A.73.3,75,72
B.72,75,73.3
C.75,72,73.3
D.75,73.3,72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:若x>0,則函數(shù)y=x+ 的最小值為1,命題q:若x>1,則x2+2x﹣3>0,則下列命題是真命題的是(
A.p∨q
B.p∧q
C.(¬p)∧(¬q)
D.p∨(¬q)

查看答案和解析>>

同步練習(xí)冊答案