【題目】在平面直角坐標系中,動圓與圓外切,與圓內切.

1)求動圓圓心的軌跡方程;

2)直線過點且與動圓圓心的軌跡交于、兩點.是否存在面積的最大值,若存在,求出的面積;若不存在,說明理由.

【答案】1;(2)存在,面積的最大值為,理由見解析.

【解析】

1)設動圓的半徑為,利用幾何關系轉化兩圓內切和外切的問題,可得出,可得知點的軌跡是以點、為焦點的橢圓,并設該橢圓的方程為,利用橢圓的定義求出的值,可求出的值,由此可得出動點的軌跡方程;

2)設直線的方程為,設點,將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,并計算出的面積關于的表達式,換元,利用雙勾函數(shù)的單調性可得出面積的最大值.

1)設點,動圓的半徑為,

由題意知,

由橢圓定義可知,動圓圓心在以為焦點的橢圓上,

設該橢圓的方程為,且,,.

由于圓內切于圓于點,則.

因此,動圓圓心的軌跡方程為;

2)存在面積的最大值.

因為直線過點,可設直線的方程為(舍).

,整理得

設點,則,.

,

因為

,則,則.

在區(qū)間上為增函數(shù),所以

所以,當且僅當時取等號,即

因此,面積的最大值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列{an}中,a2=-8,a6=0

1)求數(shù)列{an}的通項公式;

2)若等比數(shù)列{bn}滿足b1=-8,b2=a1+a2+a3,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,隨著我國汽車消費水平的提高,二手車流通行業(yè)得到迅猛發(fā)展.某汽車交易市場對2017年成交的二手車交易前的使用時間(以下簡稱“使用時間”)進行統(tǒng)計,得到頻率分布直方圖如圖1.

圖1 圖2

(1)記“在年成交的二手車中隨機選取一輛,該車的使用年限在”為事件,試估計的概率;

(2)根據(jù)該汽車交易市場的歷史資料,得到散點圖如圖2,其中(單位:年)表示二手車的使用時間,(單位:萬元)表示相應的二手車的平均交易價格.由散點圖看出,可采用作為二手車平均交易價格關于其使用年限的回歸方程,相關數(shù)據(jù)如下表(表中,):

5.5

8.7

1.9

301.4

79.75

385

①根據(jù)回歸方程類型及表中數(shù)據(jù),建立關于的回歸方程;

②該汽車交易市場對使用8年以內(含8年)的二手車收取成交價格的傭金,對使用時間8年以上(不含8年)的二手車收取成交價格的傭金.在圖1對使用時間的分組中,以各組的區(qū)間中點值代表該組的各個值.若以2017年的數(shù)據(jù)作為決策依據(jù),計算該汽車交易市場對成交的每輛車收取的平均傭金.

附注:①對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為;

②參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某水果種植基地引進一種新水果品種,經研究發(fā)現(xiàn)該水果每株的產量(單位:)和與它“相近”的株數(shù)具有線性相關關系(兩株作物“相近”是指它們的直線距離不超過),并分別記錄了相近株數(shù)為0,1,2,3,4時每株產量的相關數(shù)據(jù)如下:

0

1

2

3

4

15

12

11

9

8

(1)求出該種水果每株的產量關于它“相近”株數(shù)的回歸方程;

(2)有一種植戶準備種植該種水果500株,且每株與它“相近”的株數(shù)都為,計劃收獲后能全部售出,價格為10元,如果收入(收入=產量×價格)不低于25000元,則的最大值是多少?

(3)該種植基地在如圖所示的直角梯形地塊的每個交叉點(直線的交點)處都種了一株該種水果,其中每個小正方形的邊長和直角三角形的直角邊長都為,已知該梯形地塊周邊無其他樹木影響,若從所種的該水果中隨機選取一株,試根據(jù)(1)中的回歸方程,預測它的產量的分布列與數(shù)學期望.

附:回歸方程中斜率和截距的最小二乘法估計公式分別為:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點為圓上一動點,過點分別作軸,軸的垂線,垂足分別為,連接延長至點,使得,點的軌跡記為曲線.

(1)求曲線的方程;

(2)若點,分別位于軸與軸的正半軸上,直線與曲線相交于,兩點,試問在曲線上是否存在點,使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(多選題)設正實數(shù)滿足,則()

A. 有最小值4B. 有最小值

C. 有最大值D. 有最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在正整數(shù)n的各位數(shù)字中,共含有個1,個2,,個n.證明:并確定使等號成立的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】市面上有某品牌型和型兩種節(jié)能燈,假定型節(jié)能燈使用壽命都超過5000小時,經銷商對型節(jié)能燈使用壽命進行了調查統(tǒng)計,得到如下頻率分布直方圖:

某商家因原店面需要重新裝修,需租賃一家新店面進行周轉,合約期一年.新店面需安裝該品牌節(jié)能燈5支(同種型號)即可正常營業(yè).經了解,20瓦和55瓦的兩種節(jié)能燈照明效果相當,都適合安裝.已知型和型節(jié)能燈每支的價格分別為120元、25元,當?shù)厣虡I(yè)電價為0.75/千瓦時.假定該店面一年周轉期的照明時間為3600小時,若正常營業(yè)期間燈壞了立即購買同型燈管更換.(用頻率估計概率)

)根據(jù)頻率直方圖估算型節(jié)能燈的平均使用壽命;

)根據(jù)統(tǒng)計知識知,若一支燈管一年內需要更換的概率為,那么支燈管估計需要更換.若該商家新店面全部安裝了型節(jié)能燈,試估計一年內需更換的支數(shù);

)若只考慮燈的成本和消耗電費,你認為該商家應選擇哪種型號的節(jié)能燈,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設三位數(shù),若以為三條邊的長可以構成一個等腰(含等邊)三角形,則這樣的位數(shù)(  )

A.45個 B81個 C165個 D216個

查看答案和解析>>

同步練習冊答案