【題目】如圖,在梯形中,,,,四邊形是菱形,.

(Ⅰ)求證:;

(Ⅱ)求二面角的平面角的正切值.

【答案】(Ⅰ)證明見解析;(Ⅱ).

【解析】試題分析:

()由勾股定理可得結(jié)合面面垂直的性質(zhì)有.由菱形的性質(zhì)可得,平面.

()的中點,連接,以、、分別為、軸建立空間直角坐標系,據(jù)此計算可得平面的法向量,平面的法向量.

則二面角的平面角的余弦值,正切值為.

試題解析:

()依題意,在等腰梯形中,,

,

,,而,.

連接,∵四邊形是菱形,∴,

,.

()的中點,連接,因為四邊形是菱形,且.

所以由平面幾何易知,,.

故此可以、分別為、、軸建立空間直角坐標系,各點的坐標依次為:,,.

設(shè)平面和平面的法向量分別為,

,.

∴由 ,令,則,

同理,求得.

,故二面角的平面角的正切值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標系中,已知橢圓)的左焦點為,離心率為,過點且垂直于長軸的弦長為

(1)求橢圓的標準方程;

(2)若過點的直線與橢圓相交于不同兩點、,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,已知側(cè)面,,,,點在棱上.

)求證:平面

)試確定點的位置,使得二面角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)當時,求函數(shù)的單調(diào)區(qū)間;

)當,時,證明:(其中為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,已知,,底面,且,的中點,上,且.

1)求證:平面平面;

2)求證:平面

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點在橢圓, 為橢圓的右焦點, 分別為橢圓的左,右兩個頂點.若過點且斜率不為0的直線與橢圓交于兩點,且線段的斜率之積為.

1求橢圓的方程

2已知直線相交于點,證明: 三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某食品集團生產(chǎn)的火腿按行業(yè)生產(chǎn)標準分成8個等級,等級系數(shù)依次為1,2,3,8,其中為標準 為標準.已知甲車間執(zhí)行標準,乙車間執(zhí)行標準生產(chǎn)該產(chǎn)品,且兩個車間的產(chǎn)品都符合相應(yīng)的執(zhí)行標準.

1)已知甲車間的等級系數(shù)的概率分布列如下表,若的數(shù)學(xué)期望E(X1)=6.4,求, 的值;

X1

5

6

7

8

P

0.2

2)為了分析乙車間的等級系數(shù),從該車間生產(chǎn)的火腿中隨機抽取30根,相應(yīng)的等級系數(shù)組成一個樣本如下:3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7

用該樣本的頻率分布估計總體,將頻率視為概率,求等級系數(shù)的概率分布列和均值;

3)從乙車間中隨機抽取5根火腿,利用(2)的結(jié)果推斷恰好有三根火腿能達到標準的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ)函數(shù)的圖象能否與軸相切?若能,求出實數(shù),若不能,請說明理由;

(Ⅱ)求最大的整數(shù),使得對任意,不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為探索課堂教學(xué)改革,江門某中學(xué)數(shù)學(xué)老師用傳統(tǒng)教學(xué)和導(dǎo)學(xué)案兩種教學(xué)方式,在甲、乙兩個平行班進行教學(xué)實驗。為了解教學(xué)效果,期末考試后,分別從兩個班級各隨機抽取20名學(xué)生的成績進行統(tǒng)計,得到如下莖葉圖。記成績不低于70分者為成績優(yōu)良”。

Ⅰ)請大致判斷哪種教學(xué)方式的教學(xué)效果更佳,并說明理由;

Ⅱ)構(gòu)造一個教學(xué)方式與成績優(yōu)良列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為成績優(yōu)良與教學(xué)方式有關(guān)”?

(附:,其中是樣本容量)

獨立性檢驗臨界值表:

查看答案和解析>>

同步練習(xí)冊答案