【題目】設樣本數(shù)據(jù)x1 , x2 , …,x10的均值和方差分別為1和4,若yi=xi+a(a為非零常數(shù),i=1,2,…,10),則y1 , y2 , …,y10的均值和方差分別為(
A.1+a,4
B.1+a,4+a
C.1,4
D.1,4+a

【答案】A
【解析】解:方法1:∵yi=xi+a,
∴E(yi)=E(xi)+E(a)=1+a,
方差D(yi)=D(xi)+E(a)=4.
方法2:由題意知yi=xi+a,
= (x1+x2+…+x10+10×a)= (x1+x2+…+x10)= +a=1+a,
方差s2= [(x1+a﹣( +a)2+(x2+a﹣( +a)2+…+(x10+a﹣( +a)2]= [(x12+(x22+…+(x102]=s2=4.
故選:A.
【考點精析】解答此題的關鍵在于理解平均數(shù)、中位數(shù)、眾數(shù)的相關知識,掌握⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關系,所以最為重要,應用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關,不受個別數(shù)據(jù)的影響,有時是我們最為關心的數(shù)據(jù),以及對極差、方差與標準差的理解,了解標準差和方差越大,數(shù)據(jù)的離散程度越大;標準差和方程為0時,樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實際問題時,多采用標準差.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)設 是偶函數(shù),求實數(shù)的值;

(2),求函數(shù)在區(qū)間上的值域

(3)若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知下列命題:

①在線性回歸模型中,相關指數(shù)表示解釋變量對于預報變量的貢獻率, 越接近于1,表示回歸效果越好;

②兩個變量相關性越強,則相關系數(shù)的絕對值就越接近于1;

③在回歸直線方程中,當解釋變量每增加一個單位時,預報變量平均減少0.5個單位;

④對分類變量,它們的隨機變量的觀測值來說, 越小,“有關系”的把握程度越大.其中正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計如表:

年份

2012

2013

2014

2015

2016

2017

年份代碼t

1

2

3

4

5

6

年產(chǎn)量y(萬噸)

6.6

6.7

7

7.1

7.2

7.4

1)根據(jù)表中數(shù)據(jù),建立y關于t的線性回歸方程;

2)根據(jù)線性回歸方程預測2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面是幾何體的三視圖及直觀圖.

(1)試判斷線段上是否存在一點,使得平面,請說明理由;

(2)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,,,這五個數(shù)字中任取個組成無重復數(shù)字的三位數(shù),當三個數(shù)字中有時,需排在的前面(不一定相鄰),這樣的三位數(shù)有( )個.

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,平面平面,,的中點,,.

(1)求證:;

(2)若二面角的正弦值為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)(x∈R),對函數(shù)y=g(x)(x∈R),定義g(x)關于f(x)的“對稱函數(shù)”為函數(shù)y=h(x)(x∈R),y=h(x)滿足:對任意x∈R,兩個點(x,h(x)),(x,g(x))關于點(x,f(x))對稱.若h(x)是g(x)= 關于f(x)=3x+b的“對稱函數(shù)”,且h(x)>g(x)恒成立,則實數(shù)b的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年2月9-25日,第23屆冬奧會在韓國平昌舉行.4年后,第24 屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學在平昌冬奧會開幕后的第二天,從全校學生中隨機抽取了120名學生,對是否收看平昌冬奧會開幕式情況進行了問卷調查,統(tǒng)計數(shù)據(jù)如下:

(1)根據(jù)上表說明,能否有的把握認為,收看開幕式與性別有關?

(2)現(xiàn)從參與問卷調查且收看了開幕式的學生中,采用按性別分層抽樣的方法,選取12人參加2022年北京冬奧會志愿者宣傳活動.若從這12人中隨機選取3人到校廣播站開展冬奧會及冰雪項目的宣傳介紹,設選取的3 人中女生人數(shù)為,寫出的分布列,并求.

附:,其中.

查看答案和解析>>

同步練習冊答案