【題目】1-2020個(gè)整數(shù)中隨機(jī)選擇一個(gè)數(shù),設(shè)事件A表示選到的數(shù)能被2整除,事件B表示選到的數(shù)能被3整除,求下列事件的概率;

1)這個(gè)數(shù)既能被2整除也能被3整除;

2)這個(gè)數(shù)能被2整除或能被3整除;

3)這個(gè)數(shù)既不能被2整除也不能被3整除.

【答案】1 2 3

【解析】

(1)由古典概型的公式計(jì)算出事件對應(yīng)的概率,找出既能被2整除也能被3整除的整數(shù)的個(gè)數(shù),結(jié)合古典概型的公式計(jì)算出該事件的概率;

(2)由,結(jié)合即可計(jì)算出;

(3)由對立事件的概率公式求解即可.

解:1-2020個(gè)整數(shù)中能被2整除的有10個(gè),能被3整除的有6個(gè),

所以.

11-2020個(gè)整數(shù)中既能被2整除也能被3整除的有3個(gè),所以;

2;

3)由于事件“這個(gè)數(shù)既不能被2整除也不能被3整除”與事件“這個(gè)數(shù)能被2整除或能被3整除”互為對立事件,則.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)判斷的圖象是否是中心對稱圖形?若是,求出對稱中心;若不是,請說明理由;

2)設(shè),試討論的零點(diǎn)個(gè)數(shù)情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)().

(Ⅰ)當(dāng)時(shí),求曲線處的切線方程;

(Ⅱ)若對任意,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知直線經(jīng)過點(diǎn),傾斜角.設(shè)與圓相交與兩點(diǎn)A,B,求點(diǎn)P到兩點(diǎn)的距離之積.

(2)在極坐標(biāo)系中,圓C的方程為,直線的方程為.

①若直線過圓C的圓心,求實(shí)數(shù)的值;

②若,求直線被圓C所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為實(shí)數(shù).

1)當(dāng)時(shí),判斷并證明函數(shù)在區(qū)間上的單調(diào)性;

2)是否存在實(shí)數(shù),使得在閉區(qū)間上的最大值為,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出如下兩個(gè)命題:命題,;命題已知函數(shù),且對任意,,,都有,求實(shí)數(shù)的取值范圍,使命題為假,為真.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在區(qū)間上的函數(shù)滿足,且當(dāng)時(shí),.

(1)求的值;

(2)證明:為單調(diào)增函數(shù);

(3)若,求上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)上單調(diào)遞減,且,則不等式的解集________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】支付寶作為一款移動(dòng)支付工具,在日常生活中起到了重要的作用.巴蜀中學(xué)高2018屆學(xué)生為了調(diào)查支付寶在人群中的使用情況,在街頭隨機(jī)對名市民進(jìn)行了調(diào)查,結(jié)果如下.

(1)對名市民按年齡以及是否使用支付寶進(jìn)行分組,得到以下表格,試問能否有的把握認(rèn)為“使用支付寶與年齡有關(guān)”?

使用支付寶

不使用支付寶

合計(jì)

歲以上

歲以下

合計(jì)

(2)現(xiàn)采用分層抽樣的方法,從被調(diào)查的歲以下的市民中抽取了位進(jìn)行進(jìn)一步調(diào)查,然后從這位市民中隨機(jī)抽取位,求至少抽到位“使用支付寶”的市民的概率;

(3) 為了鼓勵(lì)市民使用支付寶,支付寶推出了“獎(jiǎng)勵(lì)金”活動(dòng),每使用支付寶支付一次,分別有的概率獲得元獎(jiǎng)勵(lì)金,每次支付獲得的獎(jiǎng)勵(lì)金情況互不影響.若某位市民在一周使用了次支付寶,記為這一周他獲得的獎(jiǎng)勵(lì)金數(shù),求的分布列和數(shù)學(xué)期望.

附:,其中.

查看答案和解析>>

同步練習(xí)冊答案