【題目】已知集合P={x|x2>2},Q={0,1,2,3},則(RP)∩Q=(
A.{0,1}
B.{0}
C.{2,3}
D.{1,2,3}

【答案】A
【解析】解:集合P={x|x2>2}={x|x<﹣ 或x> }, Q={0,1,2,3},
RP={x|﹣ ≤x≤ },
∴(RP)∩Q={0,1}.
故選:A.
【考點(diǎn)精析】關(guān)于本題考查的交、并、補(bǔ)集的混合運(yùn)算,需要了解求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分16分)已知函數(shù)處的切線方程為

(1)若= ,求證:曲線上的任意一點(diǎn)處的切線與直線和直線

圍成的三角形面積為定值;

(2)若,是否存在實(shí)數(shù),使得對(duì)于定義域內(nèi)的任意都成立;

(3)在(2)的條件下,若方程有三個(gè)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3+x,對(duì)任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,則x的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求在區(qū)間的最值;

2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù);

3)當(dāng)時(shí),求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b是正實(shí)數(shù),設(shè)函數(shù)f(x)=xlnx,g(x)=﹣a+xlnb.
(Ⅰ)設(shè)h(x)=f(x)﹣g(x),求h(x)的單調(diào)區(qū)間;
(Ⅱ)若存在x0 , 使x0∈[ , ]且f(x0)≤g(x0)成立,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.

(1)求的值;

2)求的單調(diào)區(qū)間及極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0),其部分圖象如圖所示,點(diǎn)P,Q分別為圖象上相鄰的最高點(diǎn)與最低點(diǎn),R是圖象與x軸的交點(diǎn),若P點(diǎn)的橫坐標(biāo)為 ,f( )= ,PR⊥QR,則函數(shù)f(x)的解析式可以是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y2=4x的焦點(diǎn)為F,點(diǎn)A、B在拋物線上,且∠AFB=90°,弦AB中點(diǎn)M在準(zhǔn)線l上的射影為M1 , 則 的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直三棱柱A1B1C1﹣ABC中, ,AB=AC=AA1=1,已知G和E分別為A1B1和CC1的中點(diǎn),D與F分別為線段AC和AB上的動(dòng)點(diǎn)(不包括端點(diǎn)),若GD⊥EF,則線段DF的長(zhǎng)度的取值范圍為(
A.[ ,1)
B.[ ,1]
C.( ,1)
D.[ ,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案