【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若,求曲線與的交點(diǎn)坐標(biāo);
(2)過曲線上任一點(diǎn)作與夾角為30°的直線,交于點(diǎn),且的最大值為,求的值.
【答案】(1),;(2)或.
【解析】
(1)先求出曲線與直線的直角普通方程,再聯(lián)立解方程組即可求出答案;
(2)由題意設(shè)曲線的參數(shù)方程為(為參數(shù)),再根據(jù)點(diǎn)到直線的距離公式,結(jié)合三角函數(shù)的性質(zhì)求解即可.
解:(1)曲線的直角坐標(biāo)方程為:,
當(dāng)時(shí),直線的普通方程為,
由解得或,
從而與的交點(diǎn)坐標(biāo)為,;
(2)的普通方程為,的參數(shù)方程為(為參數(shù)),
故上任一點(diǎn)到的距離為
則,
當(dāng)時(shí),的最大值為,所以;
當(dāng)時(shí),的最大值為,所以.
綜上,或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為常數(shù),函數(shù),給出以下結(jié)論:
(1)若,則存在唯一零點(diǎn)
(2)若,則
(3)若有兩個(gè)極值點(diǎn),則
其中正確結(jié)論的個(gè)數(shù)是( )
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,是由矩形,和組成的一個(gè)平面圖形,其中,,將其沿折起使得重合,連接如圖②.
(1)證明:平面平面;
(2)若為線段中點(diǎn),求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某房產(chǎn)銷售公司從登記購房的客戶中隨機(jī)選取了50名客戶進(jìn)行調(diào)查,按他們購一套房的價(jià)格(萬元)分成6組:,,,,,得到頻率分布直方圖如圖所示.用頻率估計(jì)概率.
房產(chǎn)銷售公司每賣出一套房,房地產(chǎn)商給銷售公司的傭金如下表(單位:萬元):
房?jī)r(jià)區(qū)間 | ||||||
傭金收入 | 1 | 2 | 3 | 4 | 5 | 6 |
(1)求的值;
(2)求房產(chǎn)銷售公司賣出一套房的平均傭金;
(3)若該銷售公司平均每天銷售4套房,請(qǐng)估計(jì)公司月(按30天計(jì))利潤(利潤=總傭金-銷售成本).
該房產(chǎn)銷售公司每月(按30天計(jì))的銷售成本占總傭金的百分比按下表分段累計(jì)/span>計(jì)算:
月總傭金 | 不超過100萬元的部分 | 超過100萬元至200萬元的部分 | 超過200萬元至300萬元的部分 | 超過300萬元的部分 |
銷售成本占 傭金比例 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a≤8.函數(shù)f(x)=a1nx﹣x2+5,g(x)=2x+
(1)若f(x)的極大值為5,求a的值
(2)若關(guān)于x的不等式f(x)≤g(x)在區(qū)間[1,+∞)上恒成立,求a的取值范圍,(1n2≈0.7)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,,(且),數(shù)列滿足:,且(且).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求證:數(shù)列為等比數(shù)列;
(Ⅲ)求數(shù)列的前項(xiàng)和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍.
(2)討論函數(shù)的單調(diào)性.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com