【題目】從2017年1月18日開(kāi)始,支付寶用戶可以通過(guò)“掃‘福’字”和“參與螞蟻森林”兩種方式獲得?ǎ◥(ài)國(guó)福、富強(qiáng)福、和諧福、友善福、敬業(yè)福),除夕夜22:18,每一位提前集齊五福的用戶都將獲得一份現(xiàn)金紅包.某高校一個(gè)社團(tuán)在年后開(kāi)學(xué)后隨機(jī)調(diào)查了80位該校在讀大學(xué)生,就除夕夜22:18之前是否集齊五福進(jìn)行了一次調(diào)查(若未參與集五福的活動(dòng),則也等同于未集齊五福),得到具體數(shù)據(jù)如下表:

合計(jì)

30

10

40

35

5

40

合計(jì)

65

15

80

(1)根據(jù)如上的列聯(lián)表,能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下,認(rèn)為“集齊五福與性別有關(guān)”?

(2)計(jì)算這80位大學(xué)生集齊五福的頻率,并據(jù)此估算該校10000名在讀大學(xué)生中集齊五福的人數(shù);

(3)為了解集齊五福的大學(xué)生明年是否愿意繼續(xù)參加集五;顒(dòng),該大學(xué)的學(xué)生會(huì)從集齊五福的學(xué)生中,選取2位男生和3位女生逐個(gè)進(jìn)行采訪,最后再隨機(jī)選取3次采訪記錄放到該大學(xué)的官方網(wǎng)站上,求最后被選取的3次采訪對(duì)象中至少有一位男生的概率.

參考公式: .

附表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

【答案】(1)不能(2)8125(3)

【解析】試題分析】(1)利用點(diǎn)的公式計(jì)算得,故不能.(2)人的概率為,故估計(jì)總?cè)藬?shù)為.(3)利用列舉法和古典概型計(jì)算公式求得相應(yīng)的概率.

試題解析】

解:(1)根據(jù)列聯(lián)表中的數(shù)據(jù),得到的觀測(cè)值為

,

故不能在犯錯(cuò)誤的概率不超過(guò)0.05的前提下,認(rèn)為“集齊五福與性別有關(guān)”.

(2)這80位大學(xué)生集齊五福的頻率為.

據(jù)此估算該校10000名在讀大學(xué)生中集齊五福的人數(shù)為.

(3)設(shè)選取的2位男生和3位女生分別記為,,,,隨機(jī)選取3次采訪的所有結(jié)果為,,,,,,,共有10個(gè)基本事件,

至少有一位男生的基本事件有9個(gè),

故所求概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)是否存在實(shí)數(shù),使得有三個(gè)相異零點(diǎn)?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)若不過(guò)原點(diǎn)的直線與橢圓相交于兩點(diǎn),與直線相交于點(diǎn),且是線段的中點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[2018·贛中聯(lián)考]李冶(1192-1279),真實(shí)欒城(今屬河北石家莊市)人,金元時(shí)期的數(shù)學(xué)家、詩(shī)人,晚年在封龍山隱居講學(xué),數(shù)學(xué)著作多部,其中《益古演段》主要研究平面圖形問(wèn)題:求圓的直徑、正方形的邊長(zhǎng)等.其中一問(wèn):現(xiàn)有正方形方田一塊,內(nèi)部有一個(gè)圓形水池,其中水池的邊緣與方田四邊之間的面積為13.75畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長(zhǎng)分別是(注:240平方步為1畝,圓周率按3近似計(jì)算)(

A. 10步,50 B. 20步,60 C. 30步,70 D. 40步,80

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于集合和常數(shù),定義:為集合相對(duì)的“余弦方差”.

(1)若集合,求集合相對(duì)的“余弦方差”;

(2)求證:集合相對(duì)任何常數(shù)的“余弦方差”是一個(gè)與無(wú)關(guān)的定值,并求此定值;

(3)若集合,,,相對(duì)任何常數(shù)的“余弦方差”是一個(gè)與無(wú)關(guān)的定值,求出.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)業(yè)合作社生產(chǎn)了一種綠色蔬菜共噸,如果在市場(chǎng)上直接銷(xiāo)售,每噸可獲利萬(wàn)元;如果進(jìn)行精加工后銷(xiāo)售,每噸可獲利萬(wàn)元,但需另外支付一定的加工費(fèi),總的加工(萬(wàn)元)與精加工的蔬菜量(噸)有如下關(guān)系:設(shè)該農(nóng)業(yè)合作社將(噸)蔬菜進(jìn)行精加工后銷(xiāo)售,其余在市場(chǎng)上直接銷(xiāo)售,所得總利潤(rùn)(扣除加工費(fèi))為(萬(wàn)元).

(1)寫(xiě)出關(guān)于的函數(shù)表達(dá)式;

(2)當(dāng)精加工蔬菜多少?lài)崟r(shí),總利潤(rùn)最大,并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱,,為棱的中點(diǎn),.

(1)證明:平面;

(2)設(shè)二面角的正切值為,為線段上一點(diǎn),且與平面所成角的正弦值為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,圓的方程為.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)當(dāng)時(shí),相交于,兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,,,,,點(diǎn)中點(diǎn).

(1)求證:;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案