【題目】在全國第五個“扶貧日”到來之前,某省開展“精準扶貧,攜手同行”的主題活動,某貧困縣調(diào)查基層干部走訪貧困戶數(shù)量.甲鎮(zhèn)有基層干部60人,乙鎮(zhèn)有基層干部60人,丙鎮(zhèn)有基層干部80人,每人都走訪了若干貧困戶,按照分層抽樣,從甲、乙、丙三鎮(zhèn)共選20名基層干部,統(tǒng)計他們走訪貧困戶的數(shù)量,并將走訪數(shù)量分成,,,,5組,繪制成如圖所示的頻率分布直方圖.
(1)求這20人中有多少人來自丙鎮(zhèn),并估計甲、乙、丙三鎮(zhèn)的基層干部走訪貧困戶戶數(shù)的中位數(shù)(精確到整數(shù)位);
(2)如果把走訪貧困戶達到或超過35戶視為工作出色,求選出的20名基層干部中工作出色的人數(shù),并從中選2人做交流發(fā)言,求這2人中至少有一人走訪的貧困戶在的概率.
【答案】(1)28(2)
【解析】
(1)按照比例得出這20人中來自丙鎮(zhèn)的人數(shù),利用頻率直方圖求中位數(shù)的方法求解即可;
(2)按照比例得出走訪戶數(shù)在,的人數(shù),列舉出6人中抽取2人的所有情況,再由古典概型概率公式計算即可.
解:(1)20人中來自丙鎮(zhèn)的有人.
∵,
∴估計中位數(shù).
∴
(2)20名基層干部中工作出色的人數(shù)為
其中,走訪戶數(shù)在的有人,設為,,,
走訪戶數(shù)在的有人,設為,
從6人中抽取2人有,,,,,,,,,,,,,,共15種
其中2人走訪貧困戶都在的有,,,,,,共6種.
故所求概率.
科目:高中數(shù)學 來源: 題型:
【題目】為解決城市的擁堵問題,某城市準備對現(xiàn)有的一條穿城公路MON進行分流,已知穿城公路MON自西向東到達城市中心后轉(zhuǎn)向方向,已知∠MON=,現(xiàn)準備修建一條城市高架道路L,L在MO上設一出入口A,在ON上設一出口B,假設高架道路L在AB部分為直線段,且要求市中心與AB的距離為10km.
(1)求兩站點A,B之間的距離;
(2)公路MO段上距離市中心30km處有一古建筑群C,為保護古建筑群,設立一個以C為圓心,5km為半徑的圓形保護區(qū).因考慮未來道路AB的擴建,則如何在古建筑群和市中心之間設計出入口A,才能使高架道路及其延伸段不經(jīng)過保護區(qū)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點。
(1)寫出直線l的普通方程和曲線C的直角坐標方程:
(2)若成等比數(shù)列,求a的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若冬季晝夜溫差x(單位:)與某新品種反季節(jié)大豆的發(fā)芽數(shù)量y(單位:顆)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù),用最小二乘法近似得到回歸直線方程為,則下列結(jié)論中不正確的是( )
A.y與x具有正相關關系
B.回歸直線過點
C.若冬季晝夜溫差增加,則該新品種反季節(jié)大豆的發(fā)芽數(shù)約增加2.5顆
D.若冬季晝夜溫差的大小為,則該新品種反季節(jié)大豆的發(fā)芽數(shù)一定是22顆
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知點F為拋物線C:()的焦點,過點F的動直線l與拋物線C交于M,N兩點,且當直線l的傾斜角為45°時,.
(1)求拋物線C的方程.
(2)試確定在x軸上是否存在點P,使得直線PM,PN關于x軸對稱?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】運動健康已成為大家越來越關心的話題,某公司開發(fā)的一個類似計步數(shù)據(jù)庫的公眾號.手機用戶可以通過關注該公眾號查看自己每天行走的步數(shù),同時也可以和好友進行運動量的PK和點贊.現(xiàn)從張華的好友中隨機選取40人(男、女各20人),記錄他們某一天行走的步數(shù),并將數(shù)據(jù)整理如表:
步數(shù) 性別 | 0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | >10000 |
男 | 1 | 2 | 4 | 7 | 6 |
女 | 0 | 3 | 9 | 6 | 2 |
(1)若某人一天行走的步數(shù)超過8000步被評定為“積極型”,否則被評定為“懈怠型”,根據(jù)題意完成下列2×2列聯(lián)表,并據(jù)此判斷能否有90%的把握認為男、女的“評定類型”有差異?
積極型 | 懈怠型 | 總計 | |
男 | |||
女 | |||
總計 |
(2)在張華的這40位好友中,從該天行走的步數(shù)不超過5000步的人中隨機抽取2人,設抽取的女性有X人,求X=1時的概率.
參考公式與數(shù)據(jù):
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2=,其中n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若不等式對任意 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了適應新高考改革,某校組織了一次新高考質(zhì)量測評(總分100分),在成績統(tǒng)計分析中,抽取12名學生的成績以莖葉圖形式表示如圖,學校規(guī)定測試成績低于87分的為“未達標”,分數(shù)不低于87分的為“達標”.
(1)求這組數(shù)據(jù)的眾數(shù)和平均數(shù);
(2)在這12名學生中從測試成績介于80~90之間的學生中任選2人,求至少有1人“達標”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com