已知函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321606753.png)
與函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321621627.png)
在點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321637432.png)
處有公共的切線,設(shè)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321652782.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321668533.png)
.
(1) 求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321684283.png)
的值
(2)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321715473.png)
在區(qū)間
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321730345.png)
上的最小值.
(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321746337.png)
;(2)當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321762419.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321715473.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321730345.png)
上的最小值為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321808501.png)
當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321824531.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321715473.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321730345.png)
上的最小值為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240423218711043.png)
當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321886488.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321715473.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321730345.png)
上的最小值為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321918879.png)
.
試題分析:(1)利用導(dǎo)數(shù)的幾何意義,先求導(dǎo),然后把x=1代入即可求出a的值;(2)由(1)可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321933986.png)
,根據(jù)F(x)的函數(shù)形式,可以利用求導(dǎo)的方法來解決問題,在解題的過程中要注意對參數(shù)m進(jìn)行討論.
試題解析:(I)因為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321949604.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321637432.png)
在函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321980601.png)
的圖象上
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321980840.png)
,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321996717.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321746337.png)
3分
(2)因為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321933986.png)
,其定義域為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042322042552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042322058915.png)
5分
當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042322058440.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240423220741007.png)
,
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321715473.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042322105535.png)
上單調(diào)遞增
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321715473.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321730345.png)
上最小值為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321808501.png)
7分
當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042322152457.png)
時,令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042322183978.png)
,得到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042322198831.png)
(舍)
當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042322214470.png)
時,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042322230508.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042322230581.png)
對
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042322261428.png)
恒成立,
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321715473.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321730345.png)
上單調(diào)遞增,其最小值為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321808501.png)
9分
當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042322308494.png)
時,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321886488.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042322354568.png)
對
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042322261428.png)
成立,
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321715473.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321730345.png)
上單調(diào)遞減,
其最小值為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321918879.png)
11分
當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042322464535.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321824531.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042322354568.png)
對
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042322526550.png)
成立,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042322230581.png)
對
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042322557568.png)
成立
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321715473.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042322526550.png)
單調(diào)遞減,在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042322557568.png)
上單調(diào)遞增
其最小值為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240423226351553.png)
12分
綜上,當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321762419.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321715473.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321730345.png)
上的最小值為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321808501.png)
當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321824531.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321715473.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321730345.png)
上的最小值為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240423218711043.png)
當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321886488.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321715473.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321730345.png)
上的最小值為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042321918879.png)
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044709086582.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044709102764.png)
.
(1)設(shè)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044709117722.png)
,求函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044709133473.png)
的圖像在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044709164323.png)
處的切線方程;
(2)求證:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044709164691.png)
對任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044709180641.png)
恒成立;
(3)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044709211594.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044709211630.png)
,求證:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447092261377.png)
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240432014301181.png)
(e為自然對數(shù)的底數(shù)).
(1)設(shè)曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043201461720.png)
處的切線為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043201476280.png)
,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043201476280.png)
與點(1,0)的距離為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043201492413.png)
,求a的值;
(2)若對于任意實數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043201523689.png)
恒成立,試確定
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043201539283.png)
的取值范圍;
(3)當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240432015541448.png)
上是否存在極值?若存在,請求出極值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240417375631078.png)
,
(1)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041737563463.png)
有最值,求實數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041737578283.png)
的取值范圍;
(2)當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041737594419.png)
時,若存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041737609624.png)
,使得曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041737625600.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041737641357.png)
與
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041737656388.png)
處的切線互相平行,求證
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041737672557.png)
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042251544856.png)
在點(1,1)處的切線與
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042251560266.png)
軸的交點的橫坐標(biāo)為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042251576344.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042251591545.png)
的值為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042523785447.png)
的導(dǎo)數(shù)為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042523801481.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042523816899.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042523832472.png)
的值是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知函數(shù)f(x)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040803092580.png)
,則f(x)的導(dǎo)函數(shù)f′(x)=________.
查看答案和解析>>