【題目】以下四個(gè)命題:
①對(duì)立事件一定是互斥事件;
②函數(shù)y=x+ 的最小值為2;
③八位二進(jìn)制數(shù)能表示的最大十進(jìn)制數(shù)為256;
④在△ABC中,若a=80,b=150,A=30°,則該三角形有兩解.
其中正確命題的個(gè)數(shù)為( )
A.4
B.3
C.2
D.1

【答案】C
【解析】解:對(duì)于①,由互斥事件和對(duì)立事件的概念知,對(duì)立事件一定是互斥事件,

互斥事件不一定是對(duì)立事件,①正確;

對(duì)于②,當(dāng)x>0時(shí),函數(shù)y=x+ 的最小值為2,

當(dāng)x<0時(shí),函數(shù)y=x+ 的最大值為﹣2,∴②錯(cuò)誤;

對(duì)于③,八位二進(jìn)制數(shù)能表示的最大十進(jìn)制數(shù)是

1×20+1×21+1×22+…+1×27= =255,③錯(cuò)誤;

對(duì)于④,如圖所示,△ABC中,a=80,b=150,A=30°,

∴C到AB的距離h=bsinA=75,由h<a<b,

得該三角形有兩解,④正確.

綜上,正確的命題為①④.

所以答案是:C.

【考點(diǎn)精析】通過靈活運(yùn)用命題的真假判斷與應(yīng)用,掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)镽的函數(shù) 是奇函數(shù).
(1)求a,b的值;
(2)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c且acosB=4,bsinA=3.
(1)求tanB及邊長(zhǎng)a的值;
(2)若△ABC的面積S=9,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知2sinA﹣cosB=2sinBcosC,且角B為鈍角.
(1)求角C的大;
(2)若a=2,b2+c2﹣a2= bc,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如何把一條長(zhǎng)為m的繩子截成3段,各圍成一個(gè)正方形,使這3個(gè)正方形的面積和最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體ABCD-A1B1C1D1中,點(diǎn)M是A1D1的中點(diǎn),點(diǎn)N是CD的中點(diǎn),用反證法證明直線BM與直線A1N是兩條異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,MCN是某海灣旅游區(qū)的一角,為營(yíng)造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會(huì)決定建立面積為4 平方千米的三角形主題游戲樂園ABC,并在區(qū)域CDE建立水上餐廳.已知∠ACB=120°,∠DCE=30°.
(1)設(shè)AC=x,AB=y,用x表示y,并求y的最小值;
(2)設(shè)∠ACD=θ(θ為銳角),當(dāng)AB最小時(shí),用θ表示區(qū)域CDE的面積S,并求S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,an+1=
(1)證明:數(shù)列{a2n }是等比數(shù)列;
(2)求a2n及a2n1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= +ax,x>1.
(1)若函數(shù)f(x)在 處取得極值,求a的值;
(2)若方程(2x﹣m)lnx+x=0在(1,e]上有兩個(gè)不等實(shí)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案