【題目】在平面直角坐標(biāo)系內(nèi),已知點(diǎn)及線段,在線段上任取一點(diǎn),線段長度的最小值稱為“點(diǎn)到線段的距離”,記為.
(1)設(shè)點(diǎn),線段 ,求;
(2)設(shè), , , ,線段,線段,若點(diǎn)滿足,求關(guān)于的函數(shù)解析式,并寫出該函數(shù)的值域.
【答案】(1)(2),其值域?yàn)?/span>
【解析】試題分析:
(1)由題意結(jié)合的定義有;
(2)由題意分類討論可得:當(dāng)時(shí), ;當(dāng)時(shí), ;當(dāng)時(shí), ;結(jié)合分段函數(shù)的解析式可得函數(shù)的值域?yàn)?/span>.
試題解析:
(1)在線段任取一點(diǎn)
則(當(dāng)且僅當(dāng)時(shí)取等號(hào))
所以
(2)數(shù)形結(jié)合可知:
當(dāng)時(shí), ;
當(dāng)時(shí),點(diǎn)P的軌跡是以點(diǎn)B為焦點(diǎn),直線為準(zhǔn)線開口向上的拋物線的一段,從而;
當(dāng)時(shí),點(diǎn)P的軌跡是線段BD的中垂線的一部分射線,從而;
綜上: ,其值域?yàn)?/span>
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),Sn是數(shù)列{an}的前n項(xiàng)和,且4Sn=an2+2an﹣3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)的發(fā)展,某城市的市民收入逐年增長,表1是該城市某銀行連續(xù)五年的儲(chǔ)蓄存款額(年底余額):
表1
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲(chǔ)蓄存款額y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計(jì)算的方便,工作人員將表1的數(shù)據(jù)進(jìn)行了處理,令t=x-2 010,z=y-5,得到表2:
表2
時(shí)間代號(hào)t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(1)z關(guān)于t的線性回歸方程是________;y關(guān)于x的線性回歸方程是________;
(2)用所求回歸方程預(yù)測到2020年年底,該銀行儲(chǔ)蓄存款額可達(dá)________千億元.
(附:線性回歸方程=x+,其中=,=-)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題分)
如圖, 和所在的平面互相垂直,且, .
(Ⅰ)求證: .
(Ⅱ)求直線與面所成角的大小的正弦值.
(Ⅲ)求二面角的大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲種肥料的主要原料是磷酸鹽4噸,硝酸鹽18噸;生產(chǎn)1車皮乙種肥料需要的主要原料是磷酸鹽1噸,硝酸鹽15噸.現(xiàn)庫存磷酸鹽10噸,硝酸鹽66噸,在此基礎(chǔ)上生產(chǎn)這兩種混合肥料.如果生產(chǎn)1車皮甲種肥料產(chǎn)生的利潤為12 000元,生產(chǎn)1車皮乙種肥料產(chǎn)生的利潤為7 000元,那么可產(chǎn)生的最大利潤是( )
A. 29 000元 B. 31 000元 C. 38 000元 D. 45 000元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù), ).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)函數(shù)有兩個(gè)零點(diǎn)時(shí),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)己知函數(shù)f(x)=
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)求證:當(dāng)x∈(0,1)時(shí),f(x)>2
(3)設(shè)實(shí)數(shù)k使得f(x)>k對(duì)x∈(0,1)恒成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn), , 是橢圓上的點(diǎn),且,設(shè)動(dòng)點(diǎn)滿足.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)若直線與曲線交于兩點(diǎn),求三角形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】園林管理處擬在公園某區(qū)域規(guī)劃建設(shè)一半徑為米圓心角為(弧度)的扇形景觀水池,其中為扇形的圓心,同時(shí)緊貼水池周邊建一圈理想的無寬度步道,要求總預(yù)算費(fèi)用不超過萬元,水池造價(jià)為每平方米元,步道造價(jià)為每米元.
(1)當(dāng)和分別為多少時(shí),可使廣場面積最大,并求出最大值;
(2)若要求步道長為米,則可設(shè)計(jì)出水池最大面積是多少.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com