【題目】求經(jīng)過點且分別滿足下列條件的直線的一般式方程.

(1)傾斜角為45°;

(2)在軸上的截距為5;

(3)在第二象限與坐標(biāo)軸圍成的三角形面積為4.

【答案】(1)(2)(3)

【解析】

1)利用斜率和傾斜角的關(guān)系,可以求出斜率,可以用點斜式寫出直線方程,最后化為一般方程;

2)設(shè)出直線的斜截式方程,把點代入方程中求出斜率,進(jìn)而可求出方程,化為一般式方程即可;

3)設(shè)出直線的截距式方程,利用面積公式和已知條件,可以求出所設(shè)參數(shù),即可求出直線方程,化為一般式即可.

(1)因為直線的傾斜角為45°,所以斜率,

代入點斜式,即.

(2)因為直線在軸上的截距是5,所以設(shè)直線方程為:,

代入點,故直線方程為.

(3)設(shè)所求直線方程為

,,

解之得,,

所以直線方程為,即.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)在很多人喜歡自助游,2017年孝感楊店桃花節(jié),美麗的桃花風(fēng)景和人文景觀迎來眾多賓客.某調(diào)查機(jī)構(gòu)為了了解自助游是否與性別有關(guān),在孝感桃花節(jié)期間,隨機(jī)抽取了人,得如下所示的列聯(lián)表:

贊成自助游

不贊成自助游

合計

男性

女性

合計

1若在這人中,按性別分層抽取一個容量為的樣本,女性應(yīng)抽人,請將上面的列聯(lián)表補(bǔ)充完整,并據(jù)此資料能否在犯錯誤的概率不超過前提下認(rèn)為贊成自助游是與性別有關(guān)系?

2若以抽取樣本的頻率為概率從旅游節(jié)大量游客中隨機(jī)抽取人贈送精美紀(jì)念品,記這人中贊成自助游人數(shù)為,的分布列和數(shù)學(xué)期望.

:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面平面,為等邊三角形,,,分別為的中點.

(1)求證:平面;

(2)求證:平面平面;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某籃球隊對籃球運動員的籃球技能進(jìn)行統(tǒng)計研究,針對籃球運動員在投籃命中時,運動員在籃筐中心的水平距離這項指標(biāo),對某運動員進(jìn)行了若干場次的統(tǒng)計,依據(jù)統(tǒng)計結(jié)果繪制如下頻率分布直方圖:
(Ⅰ)依據(jù)頻率分布直方圖估算該運動員投籃命中時,他到籃筐中心的水平距離的中位數(shù);
(Ⅱ)在某場比賽中,考察他前4次投籃命中到籃筐中心的水平距離的情況,并且規(guī)定:運動員投籃命中時,他到籃筐中心的水平距離不少于4米的記1分,否則扣掉1分.用隨機(jī)變量X表示第4次投籃后的總分,將頻率視為概率,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,過點P分別做圓O的切線PA、PB和割線PCD,弦BE交CD于F,滿足P、B、F、A四點共圓.
(Ⅰ)證明:AE∥CD;
(Ⅱ)若圓O的半徑為5,且PC=CF=FD=3,求四邊形PBFA的外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線截以坐標(biāo)原點為圓心的圓所得的弦長為.

(1)求圓的方程;

(2)若直線與圓切于第一象限,且與坐標(biāo)軸交于點,,當(dāng)時,求直線的方程;

(3)設(shè),是圓上任意兩點,點關(guān)于軸的對稱點為,若直線,分別交軸于點,問是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某籃球隊對籃球運動員的籃球技能進(jìn)行統(tǒng)計研究,針對籃球運動員在投籃命中時,運動員在籃筐中心的水平距離這項指標(biāo),對某運動員進(jìn)行了若干場次的統(tǒng)計,依據(jù)統(tǒng)計結(jié)果繪制如下頻率分布直方圖:
(Ⅰ)依據(jù)頻率分布直方圖估算該運動員投籃命中時,他到籃筐中心的水平距離的中位數(shù);
(Ⅱ)在某場比賽中,考察他前4次投籃命中到籃筐中心的水平距離的情況,并且規(guī)定:運動員投籃命中時,他到籃筐中心的水平距離不少于4米的記1分,否則扣掉1分.用隨機(jī)變量X表示第4次投籃后的總分,將頻率視為概率,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在2019迎新年聯(lián)歡會上,為了活躍大家氣氛,設(shè)置了“摸球中獎”游戲,桌子上放置一個不透明的箱子,箱子中有3個黃色、3個白色的乒乓球(其體積、質(zhì)地完全相同)游戲規(guī)則:從箱子中隨機(jī)摸出3個球,若摸得同一顏色的3個球,摸球者中獎價值50元獎品;若摸得非同一顏色的3個球,摸球者中獎價值20元獎品.

(1)摸出的3個球為白球的概率是多少?

(2)假定有10人次參與游戲,試從概率的角度估算一下需要準(zhǔn)備多少元錢購買獎品?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為菱形,,平面,,為的中點.

(Ⅰ) 求證: 平面

(Ⅱ) 求證:

(Ⅲ)若為線段上的點,當(dāng)三棱錐的體積為時,求的值.

查看答案和解析>>

同步練習(xí)冊答案