【題目】命題p:關(guān)于x的不等式x2+(a﹣1)x+a2≤0的解集為;命題q:函數(shù)f(x)=(4a2+7a﹣1)x是增函數(shù),若¬p∧q為真,求實數(shù)a的取值范圍.
【答案】解:p:關(guān)于x的不等式x2+(a﹣1)x+a2≤0的解集為;
則△=(a﹣1)2﹣4a2<0,
即a<﹣1或 ;
q:a<﹣2或 ,
若p∧q為真,則p真且q真,
∴
【解析】根據(jù)條件取出命題p和q為真命題的等價條件,結(jié)合復(fù)合命題¬p∧q為真命題,得到p假q真,然后進行求解即可.
【考點精析】關(guān)于本題考查的復(fù)合命題的真假,需要了解“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當P與q同為真時為真,其他情況時為假;“p或q”形式復(fù)合命題當p與q同為假時為假,其他情況時為真才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,動物園要建造一面靠墻的兩間相同的矩形熊貓居室,如果可供建造圍墻的材料總長是.
用寬(單位)表示所建造的每間熊貓居室的面積(單位);
怎么設(shè)計才能使所建造的每間熊貓居室面積最大?并求出每間熊貓居室的最大面積?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,直線.
(1)若直線與圓交于不同的兩點,當時,求的值;
(2)若是直線上的動點,過作圓的兩條切線,切點為,探究:直線是否過定點?若過定點則求出該定點,若不存在則說明理由;
(3)若為圓的兩條相互垂直的弦,垂足為,求四邊形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(1)解關(guān)于的不等式;
(2)若函數(shù)在區(qū)間上的值域為,求實數(shù)的取值范圍;
(3)設(shè)函數(shù),求滿足的的集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在經(jīng)濟學中,函數(shù)f(x)的邊際函數(shù)為Mf(x),定義為Mf(x)=f(x+1)﹣f(x).已知某服裝公司每天最多
生產(chǎn)100件.生產(chǎn)x件的收入函數(shù)為R(x)=300x﹣2x2(單位元),其成本函數(shù)為C(x)=50x+300(單位:元),利潤等于收入與成本之差.
(1)求出利潤函數(shù)p(x)及其邊際利潤函數(shù)Mp(x);
(2)分別求利潤函數(shù)p(x)及其邊際利潤函數(shù)Mp(x)的最大值;
(3)你認為本題中邊際利潤函數(shù)Mp(x)最大值的實際意義是什么?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,甲、乙是邊長為的兩塊正方形鋼板,現(xiàn)要將甲裁剪焊接成一個正四棱柱,將乙裁剪焊接成一個正四棱錐,使它們的全面積都等于一個正方形的面積(不計焊接縫的面積).
(1)將你的裁剪方法用虛線標示在圖中,并作簡要說明;
(2)試比較你所制作的正四棱柱與正四棱錐體積的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 為的中點,如圖 2.
(1)求證: 平面;
(2)求證: 平面;
(3)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.
(1)當a=1時,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com