【題目】已知正項(xiàng)數(shù)列{an}滿足:a1=3,(2n﹣1)an+2=(2n+1)an1+8n2(n>1,n∈N*),設(shè) ,數(shù)列{bn}的前n項(xiàng)的和Sn , 則Sn的取值范圍為( )
A.
B.
C.
D.

【答案】B
【解析】解:∵(2n﹣1)an+2=(2n+1)an1+8n2(n>1,n∈N*),
∴(2n﹣1)an﹣(2n+1)an1=2(4n2﹣1),
又n>1,等式兩端同除以4n2﹣1得:
,即數(shù)列{ }是以1為首項(xiàng),2為公差的等差數(shù)列.
=2n﹣1,
=
∴sn= =

所以答案是B.
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;

(2)設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校有體育特長(zhǎng)生25人,美術(shù)特長(zhǎng)生35人,音樂(lè)特長(zhǎng)生40人.用分層抽樣的方法從中抽取40人,則抽取的體育特長(zhǎng)生、美術(shù)特長(zhǎng)生、音樂(lè)特長(zhǎng)生的人數(shù)分別為(
A.8,14,18
B.9,13,18
C.10,14,16
D.9,14,17

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù)f(x)=sinx+ cosx(x∈R),先將y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 倍(縱坐標(biāo)不變),再將得到的圖象上所有點(diǎn)向右平行移動(dòng)θ(θ>0)個(gè)單位長(zhǎng)度,得到的圖象關(guān)于直線x= 對(duì)稱,則θ的最小值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos2C﹣3cos(A+B)=1
(1)求角C的大;
(2)若c= ,求△ABC周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, , , 是圓柱底面圓周的四等分點(diǎn), 是圓心, , , 與底面垂直,底面圓的直徑等于圓柱的高.

(1)證明: ;

(2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)若, ,對(duì)任意, 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】沿著三條中位線折起后能夠拼接成一個(gè)三棱錐,則稱這樣的為“和諧三角形”,設(shè)的三個(gè)內(nèi)角分別為 , ,則下列條件不能夠確定為“和諧三角形”的是

A. ; B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的不恒為零的函數(shù),且對(duì)于任意實(shí)數(shù)x,y滿足:f(2)=2,f(xy)=xf(y)+yf(x),an= (n∈N*),bn= (n∈N*),考查下列結(jié)論:
①f(1)=1;②f(x)為奇函數(shù);③數(shù)列{an}為等差數(shù)列;④數(shù)列{bn}為等比數(shù)列.
以上命題正確的是

查看答案和解析>>

同步練習(xí)冊(cè)答案