【題目】已知冪函數(shù)f(x)的圖象經(jīng)過點(3,
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性,并用定義證明.

【答案】
(1)解:設(shè)冪函數(shù)f(x)=xα,其圖象過點(3, ),

∴3α= ,

解得α=﹣2,

∴f(x)=x2


(2)解:函數(shù)f(x)=x2= ,在(0,+∞)上是單調(diào)減函數(shù);

證明如下:任取x1,x2∈(0,+∞),且x1<x2

∴f(x1)﹣f(x2)= = >0,

f(x1)>f(x2),

∴函數(shù)f(x)在(0,+∞)上的是單調(diào)減函數(shù)


【解析】(1)設(shè)冪函數(shù)f(x)=xα , 利用圖象過點(3, )求出α的值,即得解析式;(2)函數(shù)f(x)在(0,+∞)上是單調(diào)減函數(shù),利用單調(diào)性定義即可證明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, , , 平面 .設(shè)分別為的中點.

(1)求證:平面∥平面;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題px[1,12],x2﹣a0.命題qx0R,使得x02+a﹣1x0+10.pq為真,pq為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中實數(shù)為常數(shù),為自然對數(shù)的底數(shù).

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時,解關(guān)于的不等式;

(3)當(dāng)時,如果函數(shù)不存在極值點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求曲線在點處的切線方程;

(2)若處取得極小值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A=B=R,x∈A,y∈B,f:x→y=ax+b是從A到B的映射,若1和8的原象分別是3和10,則5在f下的象是(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 分別是中點,弧的半徑分別為,點平分弧,過點作弧的切線分別交于點.四邊形為矩形,其中點在線段上,點在弧上,延長交于點.設(shè),矩形的面積為.

(1)求的解析式并求其定義域;

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過原點的動直線l與圓C1:x2+y2﹣6x+5=0相交于不同的兩點A,B.
(1)求圓C1的圓心坐標(biāo);
(2)求線段AB 的中點M的軌跡C的方程;
(3)是否存在實數(shù) k,使得直線L:y=k(x﹣4)與曲線 C只有一個交點?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,則PB與AC所成的角是(

A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

同步練習(xí)冊答案