【題目】已知θ∈[0, ],直線xsinθ+ycosθ﹣1=0和圓C:(x﹣1)2+(y﹣cosθ)2= 相交所得的弦長為 ,則θ= .
科目:高中數(shù)學 來源: 題型:
【題目】把下列各命題作為原命題,分別寫出它們的逆命題、否命題和逆否命題.
(1)若α=β,則sin α=sin β;
(2)若對角線相等,則梯形為等腰梯形;
(3)已知a,b,c,d都是實數(shù),若a=b,c=d,則a+c=b+d.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于維向量,若對任意均有或,則稱為維向量. 對于兩個維向量定義.
(1)若, 求的值;
(2)現(xiàn)有一個維向量序列: 若且滿足: ,求證:該序列中不存在維向量.
(3) 現(xiàn)有一個維向量序列: 若且滿足: ,若存在正整數(shù)使得為維向量序列中的項,求出所有的.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足an+1= ,a1=1,n∈N* .
(1)求a2 , a3 , a4的值;
(2)求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了制定治理學校門口上學、放學期間家長接送孩子亂停車現(xiàn)象的措施,對全校學生家長進行了問卷調(diào)查,根據(jù)從其中隨機抽取的50份調(diào)查問卷,得到了如下的列聯(lián)表.
同意限定區(qū)域停車 | 不同意限定區(qū)域停車 | 合計 | |
男 | 18 | 7 | 25 |
女 | 12 | 13 | 25 |
合計 | 30 | 20 | 50 |
(1)學校計劃在同意限定區(qū)域停車的家長中,按照分層抽樣的方法,隨機抽取5人在上學、放學期間在學校門口參與維持秩序,在隨機抽取的5人中,選出2人擔任召集人,求至少有一名女性的概率?
(2)已知在同意限定區(qū)域停車的12位女性家長中,有3位日常開車接送孩子,現(xiàn)從這12位女性家長中隨機抽取3人參與維持秩序,記參與維持秩序的女性家長中,日常開車接送孩子的女性家長人數(shù)為,求 的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一個古典型(或幾何概型)中,若兩個不同隨機事件、概率相等,則稱和是“等概率事件”,如:隨機拋擲一枚骰子一次,事件“點數(shù)為奇數(shù)”和“點數(shù)為偶數(shù)”是“等概率事件”,關(guān)于“等概率事件”,以下判斷正確的是__________.
①在同一個古典概型中,所有的基本事件之間都是“等概率事件”;
②若一個古典概型的事件總數(shù)為大于2的質(zhì)數(shù),則在這個古典概型中除基本事件外沒有其他“等概率事件”;③因為所有必然事件的概率都是1,所以任意兩個必然事件是“等概率事件”;
④隨機同時拋擲三枚硬幣一次,則事件“僅有一個正面”和“僅有兩個正面”是“等概率事件”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=sin2(2x﹣ )﹣2tsin(2x﹣ )+t2﹣6t+1(x∈[ , ])其最小值為g(t).
(1)求g(t)的表達式;
(2)當﹣ ≤t≤1時,要使關(guān)于t的方程g(t)=kt有一個實根,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正項等比數(shù)列{an}滿足:a7=a6+2a5 , 若存在兩項am , an , 使得 =4a1 , 則 + 的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且bsinA=acosB.
(1)求角B的大。
(2)若b=3,sinC=2sinA,求a,c的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com