【題目】為檢驗寒假學生自主學習的效果,年級部對某班50名學生各科的檢測成績進行了統(tǒng)計,下面是政治成績的頻率分布直方圖,其中成績分組區(qū)間是: , , , , ,

(1)求圖中的值及平均成績;

(2)從分數(shù)在中選5人記為,從分數(shù)在中選3人,記為,8人組成一個學習小組.現(xiàn)從這5人和3人中各選1人做為組長,求被選中且未被選中的概率.

【答案】(1),74;(2).

【解析】試題分析:(1)由頻率分布直方圖的性質(zhì)能求出x及平均成績.
(2)從這5人和3人中各選1人做為組長,先求出基本事件總數(shù),再求出a1被選中且b1未被選中包含的基本事件個數(shù),由此能求出a1被選中且b1未被選中的概率.

試題解析:

(1)由,解得

平均成績?yōu)?/span>

(2)從這5人和3人中各隨機選1人,所有結(jié)果有:

15個.

事件被選中, 未被選中包含的基本事件有: , 2個.

所以被選中, 未被選中的概率

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐P-ABC中,D為AB的中點。

(1)與BC平行的平面PDE交AC于點E,判斷點E在AC上的位置并說明理由如下:

(2)若PA=PB,且PCD為銳角三角形,又平面PCD平面ABC,求證:ABPC。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知PA垂直于矩形ABCD所在的平面,M,N分別是AB,PC的中點,若∠PDA=45°,
(1)求證:MN∥平面PAD且MN⊥平面PCD.
(2)探究矩形ABCD滿足什么條件時,有PC⊥BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】探究函數(shù)的最小值,并確定取得最小值時x的值.列表如下:

x

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

y

8.5

5

4.17

4.05

4.005

4

4.005

4.002

4.04

4.3

5

4.8

7.57

請觀察表中y值隨x值變化的特點,完成以下的問題.

函數(shù)在區(qū)間(0,2)上遞減;

函數(shù)在區(qū)間 上遞增.

時, .

證明:函數(shù)在區(qū)間(0,2)遞減.

思考:函數(shù)時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)2009年至2015年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:

年份

2009

2010

2011

2012

2013

2014

2015

年份代號t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9


(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2009年至2015年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預測該地區(qū)2017年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:
參考數(shù)據(jù):(﹣3)×(﹣1.4)+(﹣2)×(﹣1)+(﹣1)×(﹣0.7)+1×0.5+2×0.9+3×1.6=14.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)兩條直線的方程分別為x+y+a=0和 x+y+b=0,已知a、b是關(guān)于x的方程x2+x+c=0的兩個實根,且0≤c≤ ,則這兩條直線間距離的最大值和最小值分別為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如右圖所示,已知點的重心,過點作直線與兩邊分別交于兩點,且,則的最小值為 ( )

A. 2 B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】凸函數(shù)的性質(zhì)定理為:如果函數(shù)f(x)在區(qū)間D上是凸函數(shù),則對于區(qū)間D內(nèi)的任意x1 , x2 , …,xn , 有 ≤f( ),已知函數(shù)y=sinx在區(qū)間(0,π)上是凸函數(shù),則在△ABC中,sinA+sinB+sinC的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax+b(a,b∈R),
(1)若函數(shù)f(x)在區(qū)間[﹣1,1]上不單調(diào),求實數(shù)a的取值范圍;
(2)記M(a,b)是|f(x)|在區(qū)間[﹣1,1]上的最大值,證明:當|a|≥2時,M(a,b)≥2.

查看答案和解析>>

同步練習冊答案