【題目】對(duì)于函數(shù)為自然對(duì)數(shù)的底數(shù),),函數(shù),給出下列結(jié)論:

①函數(shù)的圖象在處的切線在軸的截距為

②函數(shù)是奇函數(shù),且在上單調(diào)遞增;

③函數(shù)存在唯一的極小值點(diǎn),其中,且;

④函數(shù)存在兩個(gè)極小值點(diǎn),和兩個(gè)極大值點(diǎn),.

其中所有正確結(jié)論的序號(hào)是(

A.①②③B.①④C.①③④D.②④

【答案】C

【解析】

求出,寫出切線點(diǎn)斜式方程,化簡(jiǎn)可判斷①;由的定義域,即可判斷②;構(gòu)造函數(shù),通過判斷的單調(diào)性,得到的解,即可判斷③;求出,進(jìn)而求出的單調(diào)區(qū)間,極值點(diǎn),根據(jù)對(duì)稱性即可判斷④.

對(duì)于①,

函數(shù)的圖象在處的切線方程為,

,即所求的切線在軸上的截距為,

所以①正確;

對(duì)于②,,

定義域不關(guān)于原點(diǎn)對(duì)稱,所以不是奇函數(shù),所以②不正確;

對(duì)于③,,當(dāng),

當(dāng),設(shè),

時(shí),為增函數(shù),

恒成立,

上單調(diào)遞增,

上單調(diào)遞增,

,所以存在唯一的,

使得,當(dāng),

所以時(shí),取得極小值,所以③正確;

對(duì)于④,

顯然不是極值點(diǎn),取的定義域?yàn)?/span>,

此時(shí)為奇函數(shù),

為偶函數(shù),

,令,

轉(zhuǎn)化為求的交點(diǎn),

畫出兩函數(shù)圖象,如下圖所示,

為奇函數(shù),

兩函數(shù)圖象有四個(gè)交點(diǎn),均關(guān)于原點(diǎn)對(duì)稱,

當(dāng)時(shí),,

所以時(shí),取得極大值,時(shí),取得極小值,

當(dāng)時(shí),時(shí)偶函數(shù),,

,

所以時(shí),取得極大值,時(shí),取得極小值,

此時(shí),所以④正確.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的內(nèi)角AB,C的對(duì)邊長(zhǎng)分別等于ab,c,列舉如下五個(gè)條件:;②;③cosA+cos2A=0;④a=4;⑤ABC的面積等于.

1)請(qǐng)?jiān)谖鍌(gè)條件中選擇一個(gè)(只需選擇一個(gè))能夠確定角A大小的條件來求角A;

2)在(1)的結(jié)論的基礎(chǔ)上,再在所給條件中選擇一個(gè)(只需選擇一個(gè)),求ABC周長(zhǎng)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是數(shù)列1,,…,的各項(xiàng)和,,.

1)設(shè),證明:內(nèi)有且只有一個(gè)零點(diǎn);

2)當(dāng)時(shí),設(shè)存在一個(gè)與上述數(shù)列的首項(xiàng)、項(xiàng)數(shù)、末項(xiàng)都相同的等差數(shù)列,其各項(xiàng)和為,比較的大小,并說明理由;

3)給出由公式推導(dǎo)出公式的一種方法如下:在公式中兩邊求導(dǎo)得:,所以成立,請(qǐng)類比該方法,利用上述數(shù)列的末項(xiàng)的二項(xiàng)展開式證明:時(shí)(其中表示組合數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,五邊形中,四邊形為長(zhǎng)方形,為邊長(zhǎng)為的正三角形,將沿折起,使得點(diǎn)在平面上的射影恰好在上.

(Ⅰ)當(dāng)時(shí),證明:平面平面;

(Ⅱ)若,求平面與平面所成二面角的余弦值的絕對(duì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門經(jīng)常不定期地對(duì)產(chǎn)品進(jìn)行抽查檢測(cè),現(xiàn)對(duì)某條生產(chǎn)線上隨機(jī)抽取的100個(gè)產(chǎn)品進(jìn)行相關(guān)數(shù)據(jù)的對(duì)比,并對(duì)每個(gè)產(chǎn)品進(jìn)行綜合評(píng)分(滿分100分),將每個(gè)產(chǎn)品所得的綜合評(píng)分制成如圖所示的頻率分布直方圖.記綜合評(píng)分為80分及以上的產(chǎn)品為一等品.

1)求圖中的值,并求綜合評(píng)分的中位數(shù);

2)用樣本估計(jì)總體,視頻率作為概率,在該條生產(chǎn)線中隨機(jī)抽取3個(gè)產(chǎn)品,求所抽取的產(chǎn)品中一等品數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位.已知圓的參數(shù)方程為為參數(shù)),直線的直角坐標(biāo)方程為.

1)求圓的普通方程和直線的極坐標(biāo)方程;

2)設(shè)圓和直線交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為F,過F的直線與拋物線交于A,B兩點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),則下列命題中正確的個(gè)數(shù)為(

面積的最小值為4

②以為直徑的圓與x軸相切;

③記,的斜率分別為,,則;

④過焦點(diǎn)Fy軸的垂線與直線分別交于點(diǎn)M,N,則以為直徑的圓恒過定點(diǎn).

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的極值點(diǎn)個(gè)數(shù);

2)若有兩個(gè)極值點(diǎn),試判斷的大小關(guān)系并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在《周髀算經(jīng)》中,把圓及其內(nèi)接正方形稱為圓方圖,把正方形及其內(nèi)切圓稱為方圓圖.圓方圖和方圓圖在我國(guó)古代的設(shè)計(jì)和建筑領(lǐng)域有著廣泛的應(yīng)用.山西應(yīng)縣木塔是我國(guó)現(xiàn)存最古老、最高大的純木結(jié)構(gòu)樓閣式建筑,它的正面圖如圖所示.以該木塔底層的邊作方形,會(huì)發(fā)現(xiàn)塔的高度正好跟此對(duì)角線長(zhǎng)度相等.以塔底座的邊作方形.作方圓圖,會(huì)發(fā)現(xiàn)方圓的切點(diǎn)正好位于塔身和塔頂?shù)姆纸?/span>.經(jīng)測(cè)量發(fā)現(xiàn),木塔底層的邊不少于米,塔頂到點(diǎn)的距離不超過米,則該木塔的高度可能是(參考數(shù)據(jù):)(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案