【題目】(本小題滿分12分)

在平面直角坐標系中,有三個點的坐標分別是.

1)證明:A,B,C三點不共線;

(2)求過A,B的中點且與直線平行的直線方程;

(3)過C且與AB所在直線垂直的直線,求與兩坐標軸圍成的三角形的面積.

【答案】(1)見解析,(2),(3)

【解析】

試題分析:注意證明平面當中的三點共線的方法,可以應用兩點所在直線的斜率相等來處理,對應第二問需要知道兩直線平行時的條件,應用點斜式方程可得結果,也可應用平行直線系方程的應用,對應第三問,要明確兩直線垂直的條件,可以應用點斜式方程,也可應用垂直直線系方程,來求出對應的直線方程,從而找出和坐標軸的交點,得出所得的三角形的面積.

試題解析:(1) , 1分

, 2分

3分

三點不共線. 4分

(2)的中點坐標為, 5分

直線的斜率, 6分

所以滿足條件的直線方程為,為所求. 8分

(3),與AB所在直線垂直的直線的斜率為, (9

所以滿足條件的直線方程為. (10

因為直線軸上的截距分別為4和, (11

所以與兩坐標軸圍成的三角形的面積為. 12分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某種商品在天每件的銷售價格(元)與時間(天)的函數(shù)關系用如圖表示,該商品在天內(nèi)日銷售量(件)與時間(天)之間的關系如下表:

)根據(jù)提供的圖象(如圖),寫出該商品每件的銷售價格與時間的函數(shù)關系式.

)根據(jù)表提供的數(shù)據(jù),寫出日銷售量與時間的一次函數(shù)關系式.

)求該商品的日銷售金額的最大值,并指出日銷售金額最大的一天是天中的第幾天.(日銷售金額每件的銷售價格日銷售量)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(I)求的單調(diào)區(qū)間;

(II)若對任意的,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin ωx·cos ωx cos2ωx

(ω>0),直線xx1,xx2yf(x)圖象的任意兩條對稱軸,且|x1x2|的最小值為 .

(Ⅰ)求f(x)的表達式;

(Ⅱ)將函數(shù)f(x)的圖象向右平移個單位長度后,再將得到的圖象上各點的橫坐標伸長為原來的2倍,縱坐標不變,得到函數(shù)yg(x)的圖象,求函數(shù)g(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了在十一黃金周期間降價搞促銷,某超市對顧客實行購物優(yōu)惠活動,規(guī)定一次購物付款總額:(1)如果不超過200元,則不予優(yōu)惠;(2)如果超過200元,但不超過500元,則按標價給予9折優(yōu)惠;(3)如果超過500元,其中500元按第(2)條給予優(yōu)惠,超過500元的部分給予7折優(yōu)惠。小張兩次去購物,分別付款168元和423元,假設她一次性購買上述同樣的商品,則應付款額為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

1)判斷函數(shù)的奇偶性,并說明理由;

2)證明:當時,函數(shù)上為減函數(shù);

3)求函數(shù)的值域

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就是越高,具體浮動情況如下表:

交強險浮動因素和浮動費率比率表

浮動因素

浮動比率

上一個年度未發(fā)生有責任道路交通事故

下浮10%

上兩個年度未發(fā)生有責任道路交通事故

下浮20%

上三個及以上年度未發(fā)生有責任道路交通事故

下浮30%

上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故

0%

上一個年度發(fā)生兩次及兩次以上有責任道路交通事故

上浮10%

上一個年度發(fā)生有責任道路交通死亡事故

上浮30%

某機構為了 某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

(1)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規(guī)定,,記為某同學家的一輛該品牌車在第四年續(xù)保時的費用,求的分布列與數(shù)學期望;(數(shù)學期望值保留到個位數(shù)字)

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事故車盈利10000元:

①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;

②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為響應市政府“綠色出行”的號召,王老師每個工作日上下班由自駕車改為選擇乘坐地鐵或騎共享單車這兩種方式中的一種出行.根據(jù)王老師從2017年3月到2017年5月的出行情況統(tǒng)計可知,王老師每次出行乘坐地鐵的概率是0.4,騎共享單車的概率是0.6.乘坐地鐵單程所需的費用是3元,騎共享單車單程所需的費用是1元.記王老師在一個工作日內(nèi)上下班所花費的總交通費用為X元,假設王老師上下班選擇出行方式是相互獨立的.

(I)求X的分布列和數(shù)學期望;

(II)已知王老師在2017年6月的所有工作日(按22個工作日計)中共花費交通費用110元,請判斷王老師6月份的出行規(guī)律是否發(fā)生明顯變化,并依據(jù)以下原則說明理由.

原則:設表示王老師某月每個工作日出行的平均費用,若,則有95%的把握認為王老師該月的出行規(guī)律與前幾個月的出行規(guī)律相比有明顯變化.(注:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,ABC的三個內(nèi)角為A,B,C,m=sin B+sin C,0,n=0,sin A

|m|2-|n|2=sin Bsin C

1求角A的大小

2求sin B+sin C的取值范圍

查看答案和解析>>

同步練習冊答案