【題目】如圖,已知四棱錐的底面為矩形,D的中點,AC平面BCC1B1

(Ⅰ)證明:AB//平面CDB1;

(Ⅱ)若AC=BC=1,BB1=,

(1)求BD的長;

(2)求B1D與平面ABB1所成角的正弦值.

【答案】(Ⅰ)見解析;(Ⅱ) (1),(2).

【解析】試題分析:(Ⅰ)利用中位線定理得出DE//AB,即可證得;

(Ⅱ)(1)在中,利用勾股定理運算即可;

(2)以C為原點,CB所在的直線為x軸、CC1為y軸建立空間直角坐標系,利用向量求解線面角即可.

試題解析:

(Ⅰ)證明:連結(jié)于E,連結(jié)DE,

∵D、E分別為的中點,

∴DE//AB,

又∵平面, 平面,

∴AB//平面CDB1;

(Ⅱ)(1)∵AC⊥平面BCC1B1, 平面,

,

又∵, ,

平面,

平面,

,

,∵BC=1, ,

;

【注:以上加灰色底紋的條件不寫不扣分!】

(2)依題意知AC、BC、CC1兩兩互相垂直,以C為原點,CB所在的直線為x軸、CC1為y軸建立空間直角坐標系如圖示,

易得,

,

,,,

設平面的一個法向量為,

,

與平面所成的角為,則 ,

與平面所成的角的正弦值為.

【其它解法請參照給分,如先用體積法求出點D到平面ABB1的距離,(10分)再用公式與平面所成角的正弦值(12分)】

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分12分)某公司的廣告費支出x與銷售額y(單位:萬元)之間有下列對應數(shù)據(jù)

x

2

4

5

6

8

y

30

40

60

50

70

1)畫出散點圖,并判斷廣告費與銷售額是否具有相關關系;

2)根據(jù)表中提供的數(shù)據(jù),用最小二乘法求出yx的回歸方程;

3)預測銷售額為115萬元時,大約需要多少萬元廣告費。

參考公式:回歸方程為其中,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點

(Ⅰ)求橢圓的方程.

(Ⅱ)若 是橢圓上兩個不同的動點,且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某林區(qū)的森林蓄積量每年比上一年平均增長9.5%,要增長到原來的x需經(jīng)過y,則函數(shù)yf(x)的圖像大致為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,建立平面直角坐標系xOy,x軸在地平面上,y軸垂直于地平面,單位長度為1千米.某炮位于坐標原點.已知炮彈發(fā)射后的軌跡在方程y=kx- (1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關.炮的射程是指炮彈落地點的橫坐標.

(1)求炮的最大射程;

(2)設在第一象限有一飛行物(忽略其大小),其飛行高度為3.2千米,試問它的橫坐標a不超過多少時,炮彈可以擊中它?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù).

(1)若的定義域為,求實數(shù)的取值范圍;

(2)當時,求函數(shù)的最小值;

(3)是否存在非負實數(shù),使得函數(shù)的定義域為,值域為,若存在,求出的值;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,求的單調(diào)區(qū)間;

(2)若有最大值,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù),曲線的參數(shù)方程為為參數(shù),在以為極點,軸的正半軸為極軸的極坐標系中,射線,與,各有一個交點,當時,這兩個交點間的距離為2,當,這兩個交點重合

1分別說明,是什么曲線,并求出的值;

2設當時,,的交點分別為,當,,的交點分別為,求四邊形的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)四川省民政廳報告,2013年6月29日以來,四川省中東部出現(xiàn)強降雨天氣過程,局地出現(xiàn)大暴雨.暴雨洪澇災害已造成遂寧、德陽、綿陽等12市34縣(市、區(qū))244萬人受災,共造成直接經(jīng)濟損失85502.41萬元.適逢暑假,小王在某小區(qū)調(diào)查了50戶居民由于洪災造成的經(jīng)濟損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出頻率分布直方圖(如圖).


(1)若先從損失超過6000元的居民中隨機抽出2戶進行調(diào)查,求這2戶不在同一小組的概率;(2)洪災過后小區(qū)居委會號召小區(qū)居民為洪災重災區(qū)捐款,小王調(diào)查的50戶居民的捐款情況如表,在表格空白處填寫正確的數(shù)字,并說明是否有95%以上的把握認為捐款數(shù)額多于或少于500元和自身經(jīng)濟損失是否到4000元有關?

P(K2k

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

附:臨界值表參考公式:K2=

查看答案和解析>>

同步練習冊答案