【題目】已知橢圓方程為,過橢圓外一點P可以做出兩條切線(如圖一),我們形象的稱為“筷子夾湯圓”.若P點在變化過程中,保持兩根“筷子”垂直不變,則P到原點的距離始終為一個定值,即P的運動軌跡為一個以原點為圓心,半徑為定值的一個圓,我們把該圓稱為橢圓的“準(zhǔn)圓”,試寫出該“準(zhǔn)圓”的方程是______________.若矩形的四條邊都與該橢圓相切(如圖二),則矩形的面積最大值為___________________.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】阿波羅尼斯(約公元前年)證明過這樣一個命題:平面內(nèi)到兩定點距離之比為常數(shù)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.若平面內(nèi)兩定點、間的距離為,動點滿足,則的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟的發(fā)展,個人收入的提高,自2019年1月1日起,個人所得稅起征點和稅率的調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額.依照個人所得稅稅率表,調(diào)整前后的計算方法如下表:
個人所得稅稅率表(調(diào)整前) | 個人所得稅稅率表(調(diào)整后) | ||||
免征額3500元 | 免征額5000元 | ||||
級數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) | 級數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) |
1 | 不超過1500元部分 | 3 | 1 | 不超過3000元部分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 2 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 3 | 超過12000元至25000元的部分 | 20 |
... | ... | ... | ... | ... | ... |
(1)假如小紅某月的工資、薪金等所得稅前收入總和不高于8000元,記
(2)某稅務(wù)部門在小紅所在公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
收入(元) | ||||||
人數(shù) | 30 | 40 | 10 | 8 | 7 | 5 |
先從收入在及的人群中按分層抽樣抽取7人,再從中選2人作為新納稅法知識宣講員,求兩個宣講員不全是同一收入人群的概率;
(3)小紅該月的工資、薪金等稅前收入為7500元時,請你幫小紅算一下調(diào)整后小紅的實際收入比調(diào)整前增加了多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)宣傳部組織了這樣一個游戲項目:甲箱子里面有3個紅球,2個白球,乙箱子里面有1個紅球,2個白球,這些球除了顏色以外,完全相同。每次游戲需要從這兩個箱子里面各隨機摸出兩個球.
(1)設(shè)在一次游戲中,摸出紅球的個數(shù)為,求分布列.
(2)若在一次游戲中,摸出的紅球不少于2個,則獲獎.
①求一次游戲中,獲獎的概率;
②若每次游戲結(jié)束后,將球放回原來的箱子,設(shè)4次游戲中獲獎次數(shù)為,求的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)圖象兩條相鄰的對稱軸間的距離為.
(1)求的值;
(2)將函數(shù)的圖象沿軸向左平移個單位長度后,再將得到的圖象上各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),和直線m:,且.
求a的值;
是否存在k的值,使直線m既是曲線的切線,又是曲線的切線?如果存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過兩點,且圓心在直線上.
(1)求圓的方程;
(2)已知過點的直線與圓相交截得的弦長為,求直線的方程;
(3)已知點,在平面內(nèi)是否存在異于點的定點,對于圓上的任意動點,都有為定值?若存在求出定點的坐標(biāo),若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點,軸為極軸的極坐標(biāo)系中,圓的方程.
(1)寫出直線的普通方程和圓的直角坐標(biāo)方程;
(2)若點的直角坐標(biāo)為,圓與直線交于兩點,求弦中點的直角坐標(biāo)和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對于曲線f(x)=-ex-x(e為自然對數(shù)的底數(shù))的任意切線l1,總存在曲線g(x)=ax+2cosx的切線l2,使得l1⊥l2,則實數(shù)a的取值范圍為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com