【題目】已知直線l經(jīng)過直線2x+y+5=0與x﹣2y=0的交點,圓C1:x2+y2﹣2x﹣2y﹣4=0與圓C2:x2+y2+6x+2y﹣6=0相較于A、B兩點.
(1)若點P(5,0)到直線l的距離為4,求l的直線方程;
(2)若直線l與直線AB垂直,求直線l方程.

【答案】
(1)解:設(shè)直線l的方程為:2x+y﹣5+λ(x﹣2y)=0 即:(2+λ)x+(1﹣2λ)y﹣5=0

由題意: =3

整理得:2λ2﹣5λ+2=0

(2λ﹣1)( λ﹣2)=0

∴λ= 或λ=2

∴直線l的方程為:2x+y﹣5+ (x﹣2y)=0或2x+y﹣5+2(x﹣2y)=0

即:x=2或4x﹣3y﹣5=0


(2)解:圓C1:x2+y2﹣2x﹣4y﹣4=0,即(x﹣1)2+(y﹣2)2=9,

故圓心坐標為:C1(1,2)

圓C2:x2+y2+6x+2y﹣6=0 即(x+3)2+(y+1)2=16,

故圓心坐標為:C2(﹣3,﹣1)

直線C1C2與AB垂直,所以直線l與C1C2平行,可知:l的斜率為k= =

由題意: =

解得:λ=

∴直線l的方程為:2x+y﹣5+ (x﹣2y)=0

即:3x﹣4y﹣2=0


【解析】(1)設(shè)出直線的交點系方程,代入點到直線距離公式,求出λ值,可得l的直線方程;(2)直線l與直線AB垂直,即直線l與C1C2平行,由此求出λ值,可得l的直線方程;

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)設(shè)曲線軸正半軸的交點為,曲線在點處的切線方程為,

求證:對于任意的正實數(shù),都有

(3)若方程為實數(shù))有兩個正實數(shù)根,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點,其離心率為.

(1)求橢圓的方程;

(2)直線相交于兩點,在軸上是否存在點,使為正三角形,若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=e|xa|(a∈R)滿足f(1+x)=f(﹣x),且f(x)在區(qū)間[m,m+1]上是單調(diào)函數(shù),則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)從A、B、C、D…共n(n≥2,n∈N+)所高校中,任選兩所參加自主招生考試(并且只能選兩所高校),但同學(xué)甲特別喜歡A高校,他除選A高校外,再在余下的n﹣1所中隨機選1所;同學(xué)乙對n所高校沒有偏愛,在n所高校中隨機選2所.若甲同學(xué)未選中D高校且乙選中D高校的概率為
(1)求自主招生的高校數(shù)n;
(2)記X為甲、乙兩名同學(xué)中未參加D高校自主招生考試的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】宿州市某登山愛好者為了解山高y(百米)與氣溫x(℃)之間的關(guān)系,隨機統(tǒng)計了4次山高與相應(yīng)的氣溫,并制作了對照表,由表中數(shù)據(jù),得到線性回歸方程為y=﹣2x+a,由此估計山高為72(百米)處的氣溫為(

氣溫x(℃)

18

13

10

﹣1

山高y(百米)

24

34

38

64


A.﹣10
B.﹣8
C.﹣6
D.﹣4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.
(1)證明:MN∥平面PAB;
(2)求點M到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了解某地區(qū)觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性. 附:K2=

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83


(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認為“體育迷”與性別有關(guān)?

非體育迷

體育迷

合計

總計


(2)將日均收看該體育節(jié)目不低于50分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”中有2名女性,若從“超級體育迷”中任意選取2名,求至少有1名女性觀眾的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè), .

1)令,求的單調(diào)區(qū)間;

2)已知處取得極大值,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案