【題目】從金山區(qū)走出去的陳馳博士,在《自然—可持續(xù)性》雜志上發(fā)表的論文中指出:地球正在變綠,中國通過植樹造林和提高農(nóng)業(yè)效率,在其中起到了主導(dǎo)地位.已知某種樹木的高度(單位:米)與生長年限(單位:年,tN*)滿足如下的邏輯斯蒂函數(shù):,其中e為自然對數(shù)的底數(shù). 設(shè)該樹栽下的時刻為0.

(1)需要經(jīng)過多少年,該樹的高度才能超過5米?(精確到個位)

(2)在第幾年內(nèi),該樹長高最快?

【答案】(1)8年(2)第四年內(nèi)或第五年內(nèi)

【解析】

1)解不等式ft)>5,即可

2)利用作差法求出ft)﹣ft1)的表達(dá)式,判斷函數(shù)的單調(diào)性和最值即可.

解:(1) 令5,解得,

即需要經(jīng)過8年,該樹的高度才能超過5米;

(2) 當(dāng)N*時,

設(shè),則.

,則.

上式當(dāng)且僅當(dāng)時,取得最大值

此時,,即,解得.

由于要求為正整數(shù),故樹木長高最快的可能值為4或5,

,

所以,該樹在第四年內(nèi)或第五年內(nèi)長高最快.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業(yè)的計劃.2018年某企業(yè)計劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場分析,全年需投入固定成本2500萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且.由市場調(diào)研知,每輛車售價5萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.

1)求出2018年的利潤Lx)(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤=銷售額-成本)

22018年產(chǎn)量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,矩形,、、,將矩形折疊,使O點落在線段上,設(shè)折痕所在直線的斜率為k,則k的取值范圍是( 

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)).以為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(2)設(shè)動直線分別與曲線,相交于點,,求當(dāng)為何值時,取最大值,并求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長方體中,下列計算結(jié)果一定不等于0的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,將橢圓上每一點的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼囊话,得曲線C,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為

寫出曲線C的普通方程和直線l的直角坐標(biāo)方程;

已知點且直線l與曲線C交于A、B兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的個數(shù)是( )

1)在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積相等.

2)如果一組數(shù)中每個數(shù)減去同一個非零常數(shù),則這一組數(shù)的平均數(shù)改變,方差不改變.

3)一個樣本的方差s2=[x32+X—32+ +X32],則這組數(shù)據(jù)總和等于60.

4)數(shù)據(jù)的方差為,則數(shù)據(jù)的方差為.

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線與平面相交但不垂直,則下列說法中正確的是( )

A.在平面內(nèi)沒有直線與直線垂直;

B.在平面內(nèi)有且只有一條直線與直線垂直;

C.在平面內(nèi)有無數(shù)條直線與直線垂直;

D.在平面內(nèi)存在兩條相交直線與直線垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,頂點在底面的射影恰好是菱形對角線的交點,且,,,其中.

(1)當(dāng)時,求證:

(2)當(dāng)與平面所成角的正弦值為時,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案