(理)已知函數(shù)
(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)如圖給出的是與函數(shù)f(x)相關(guān)的一個程序框圖,試構(gòu)造一個公差不為零的等差數(shù)列
{an},使得該程序能正常運行且輸出的結(jié)果恰好為0.請說明你的理由.
(文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且,求D2+E2-4F的值;
(3)設(shè)四邊形ABCD的一條邊CD的中點為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點O、G、H是否共線,并說明理由.

【答案】分析:理科(1)先求出函數(shù)的定義域,得到定義域關(guān)于原點對稱,在檢驗-x與x的函數(shù)值之間的關(guān)系,得到奇函數(shù).
(2)根據(jù)單調(diào)性的定義,設(shè)出已知大小關(guān)系的任意兩個變量,利用定義證明函數(shù)的單調(diào)性,得到函數(shù)是一個增函數(shù).
(3)由程序框圖知,公差不為零的等差數(shù)列{an}要滿足條件,則必有f(a1)+f(a2)+…+f(a10)=0.所以要構(gòu)造滿足條件的等差數(shù)列{an},可利用等差數(shù)列的性質(zhì),只需等差數(shù)列{an}滿足:a1+a10=a2+a9═a5+a6=0.
文科(1)發(fā)現(xiàn)A、C兩點分別在x軸正負(fù)半軸上.設(shè)兩點坐標(biāo)分別為A(a,0),C(c,0),則有ac<0.對于圓方程x2+y2+Dx+Ey+F=0,當(dāng)y=0時,可得x2+Dx+F=0,其中方程的兩根分別為點A和點C的橫坐標(biāo),于是有xAxC=ac=F,得到故F<0.
(2)寫出對角線互相垂直的四邊形ABCD面積,根據(jù)兩個向量的數(shù)量積等于0,整理出角是一個直角,根據(jù)圓的方程寫出結(jié)果.
(3)設(shè)出和寫出要用的點的坐標(biāo),當(dāng)y=0時可得x2+Dx+F=0,其中方程的兩根分別為點A和點C的橫坐標(biāo),于是有xAxC=ac=F.同理,當(dāng)x=0時,可得y2+Ey+F=0,其中方程的兩根分別為點B和點D的縱坐標(biāo),于是有yByD=bd=F.得到結(jié)果.
解答:解:(1)由
,
,任取,
都有f(-x)==-f(x),則該函數(shù)為奇函數(shù).
(2)任取0<x1<x2<1,
則有0<x12<x22<1⇒2-x12>2-x22>1,⇒ln(2-x12)>ln(2-x22)>0.
,
所以,
即f(x1)>f(x2),
故函數(shù)f(x)在區(qū)間(0,1)上單調(diào)遞減.
(3)由程序框圖知,公差不為零的等差數(shù)列{an}要滿足條件,
則必有f(a1)+f(a2)+…+f(a10)=0.
由(1)知函數(shù)f(x)是奇函數(shù),而奇函數(shù)的圖象關(guān)于原點對稱,
所以要構(gòu)造滿足條件的等差數(shù)列{an},可利用等差數(shù)列的性質(zhì),只需等差數(shù)列{an}
滿足:a1+a10=a2+a9═a5+a6=0
即可.
我們可以先確定a5,a6使得a5+a6=0,因為公差不為零的等差數(shù)列{an}必是單調(diào)的數(shù)列,只要它的最大項和最小項在中,即可滿足要求.
所以只要a5,a6
對應(yīng)的點盡可能的接近原點.如取a5=-0.1,a6=0.1,存在滿足條件的一個等差數(shù)列{an}可以是an=0.2n-1.1(1≤n≤10,n∈N*).
(文科)(1)由題意,不難發(fā)現(xiàn)A、C兩點分別在x軸正負(fù)半軸上.設(shè)兩點坐標(biāo)分別為A(a,0),C(c,0),
則有ac<0.
對于圓方程x2+y2+Dx+Ey+F=0,
當(dāng)y=0時,可得x2+Dx+F=0,其中方程的兩根分別為點A和點C的橫坐標(biāo),于是有xAxC=ac=F.
因為ac<0,故F<0.
(2)對角線互相垂直的四邊形ABCD面積,
因為S=8,|AC|=2,可得|BD|=8.
又因為,
所以∠A為直角,而因為四邊形是圓M的內(nèi)接四邊形,
故|BD|=2r=8⇒r=4.
對于方程x2+y2+Dx+Ey+F=0所表示的圓,
可知
所以D2+E2-4F=4r2=64.
(3)證:設(shè)四邊形四個頂點的坐標(biāo)分別為A(a,0),B(0,b),C(c,0),D(0,d).
則可得點G的坐標(biāo)為,即
,且AB⊥OH,故要使G、O、H三點共線,只需證即可.
,且對于圓M的一般方程x2+y2+Dx+Ey+F=0,
當(dāng)y=0時可得x2+Dx+F=0,其中方程的兩根分別為點A和點C的橫坐標(biāo),
于是有xAxC=ac=F.
同理,當(dāng)x=0時,可得y2+Ey+F=0,其中方程的兩根分別為點B和點D的縱坐標(biāo),
于是有yByD=bd=F.
所以,,即AB⊥OG.
故O、G、H必定三點共線.
點評:本題是一個文理合卷的題目,有兩個題目分別考查函數(shù)的性質(zhì)和直線與圓的方程,本題解題的關(guān)鍵是看清題目的實質(zhì),抓住解題的主要方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年博興二中綜合一理)(12分)已知函數(shù)。

(1)寫出f(x)的單調(diào)區(qū)間;     (2)解不等式f(x)<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年濟寧質(zhì)檢理)(12分)

  已知函數(shù)

(1)求函數(shù)的最小正周期;

(2)在給定的坐標(biāo)系內(nèi),用五點作圖法畫出函數(shù)在一個周期內(nèi)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年天津南開區(qū)質(zhì)檢一理)(12分)

已知函數(shù)。

(1)求的值;

(2)求的最小正周期和在區(qū)間上的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年天津南開區(qū)質(zhì)檢一理)(12分)

已知函數(shù)

(1)若函數(shù)的導(dǎo)函數(shù)是奇函數(shù),求的值;

(2)求函數(shù)的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山西省高三期中考試數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)A(理)已知函數(shù),其中.

(1)若存在,使得成立,求實數(shù)的取值范圍;

(2)求函數(shù)的值域.

 

查看答案和解析>>

同步練習(xí)冊答案