【題目】設拋物線C:x2=2py(p>0)的焦點為F,準線為l,A為C上一點,已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點.
(1)若p=2且∠BFD=90°時,求圓F的方程;
(2)若A,B,F(xiàn)三點在同一直線m上,設直線m與拋物線C的另一個交點為E,在y軸上求一點G,使得∠OGE=∠OGA.

【答案】
(1)解:由已知得F(0,1),△BFD為等腰直角三角形,|BD|=4,

⊙F的半徑|FB|=2 ,

∴⊙F的方程是x2+(y﹣1)2=8;


(2)解:∵A,B,F(xiàn)三點在同一直線m上,

∴AB是⊙F的直徑,∠ADB=90°,

由拋物線的定義得|AD|=|FA|= |AB|,

∴∠ABD=30°,m的斜率是 或﹣

①當m的斜率是 時,直線m的方程是:y= x+

代入x2=2py,x2 px﹣p2=0,(△>0),

解得:x1= p,x2=﹣ p,

不妨記A( p, p),E(﹣ p, ),并設G(0,y0),

∵∠OGE=∠OGA,∴KGE+KGA=0,

+ =0,解得:y0=﹣ ,

②當m的斜率為﹣ 時,由圖象的對稱性可知G(0,﹣ ),

綜上,點G的坐標是(0,﹣ ).


【解析】(1)求出圓的半徑,從而求出圓的方程;(2)由拋物線的定義得|AD|=|FA|= |AB|,從而求出m,代入拋物線進而求出G的坐標.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某學校課題組為了研究學生的數(shù)學成績和物理成績之間的關系,隨機抽取高二年級20名學生某次考試成績(百分制)如表所示:

序號

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

數(shù)學成績

95

75

80

94

92

65

67

84

98

71

67

93

64

78

77

90

57

83

72

83

物理成績

90

63

72

87

91

71

58

82

93

81

77

82

48

85

69

91

61

84

78

86

若數(shù)學成績90分(含90分)以上為優(yōu)秀,物理成績85(含85分)以上為優(yōu)秀.有多少把握認為學生的數(shù)學成績與物理成績之間有關系(
A.99.5%
B.99.9%
C.97.5%
D.95%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 平面,四邊形為正方形,且, 為線段的中點.

(Ⅰ)求證: 平面;

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A、B、C所對的邊分別為a、b、c,f (x)=sin(2x﹣A) (x∈R),函數(shù)f(x)的圖象關于點( ,0)對稱.
(1)當x∈(0, )時,求f (x)的值域;
(2)若a=7且sinB+sinC= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高二年級有甲、乙、丙三個班參加社會實踐活動,高二年級老師要分到各個班級帶隊,其中男女老師各一半,每次任選兩個老師,將其中一個老師分到甲班,如果這個老師是男老師,就將另一個老師分到乙班,否則就分到丙班,重復上述過程,直到所有老師都分到班級,則

A. 乙班女老師不多于丙班女老師 B. 乙班男老師不多于丙班男老師

C. 乙班男老師與丙班女老師一樣多 D. 乙班女老師與丙班男老師一樣多

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當a=﹣2時,求不等式f(x)<g(x)的解集;
(2)設a>﹣1,且當 時,f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a為實數(shù),函數(shù)f(x)=+a+a

(1)設t=,求t的取值范圖;

(2)把f(x)表示為t的函數(shù)h(t);

(3)設f (x)的最大值為M(a),最小值為m(a),記g(a)=M(a)-m(a)求g(a)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司采用招考方式引進人才,規(guī)定必須在,三個測試中任意選取兩個進行測試,若在這兩個測試點都測試合格,則可參加面試,否則不被錄用,已知考生在每測試個點試結(jié)果互不影響,若考生小李和小王起前來參加招考,小李在測試點測試合格的概率分別為,小王在上述三個測試點測試合格的概率都是.

(1)問小李選擇哪兩個測試點測試才能使得可以參加面試的可最大?說明理由;

(2)假設小李選測試點進行測試,小王選擇測試點進行測試,為兩人在各測試點測試合格的測試點個數(shù)之和,機變的分布列及數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=a2x+2ax-1(a>1,且a為常數(shù))在區(qū)間[-1,1]上的最大值為14.

(1)求fx)的表達式;

(2)求滿足fx)=7x的值.

查看答案和解析>>

同步練習冊答案