【題目】十二生肖,又叫屬相,是中國與十二地支相配以人出生年份的十二種動物,包括鼠、牛、虎、兔、龍、蛇、馬、羊、猴、雞、狗、豬。已知在甲、乙、丙、丁、戊、己六人中,甲、乙、丙的屬相均是龍,丁、戊的屬相均是虎,己的屬相是猴,現(xiàn)從這六人中隨機選出三人,則所選出的三人的屬相互不相同的概率等于( )
A.
B.
C.
D.

【答案】D
【解析】從這六人中隨機選出三人包含的選取方法為 ,所選出的三人的屬相互不相同包含的選取方法為 ,故所選出的三人的屬相互不相同的概率為 ,所以答案是:D.


【考點精析】認真審題,首先需要了解概率的意義(任何事件的概率是0~1之間的一個確定的數(shù),它度量該事情發(fā)生的可能性.小概率事件很少發(fā)生,而大概率事件則經(jīng)常發(fā)生.知道隨機事件的概率有利于我們作出正確的決策).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=5,PD=8,點E,F(xiàn)分別是PB,DC的中點.
(1)求證:EF∥平面PAD;
(2)求EF與平面PDB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)若,判斷函數(shù)的奇偶性,并加以證明;

(2)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;

(3)若存在實數(shù)使得關(guān)于的方程有三個不相等的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的一個上界.已知函數(shù), .

(1)若函數(shù)為奇函數(shù),求實數(shù)的值;

(2)在(1)的條件下,求函數(shù)在區(qū)間上的所有上界構(gòu)成的集合;

(3)若函數(shù)上是以3為上界的有界函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)是奇函數(shù).

(1)求的值;

(2)判斷的單調(diào)性,并用單調(diào)性定義證明;

(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知首項為 的等比數(shù)列 是遞減數(shù)列,且 , , 成等差數(shù)列;數(shù)列 的前 項和為 ,且 ,
(Ⅰ)求數(shù)列 , 的通項公式;
(Ⅱ)已知 ,求數(shù)列 的前 項和 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只小船以的速度由南向北勻速駛過湖面,在離湖面高20米的橋上,一輛汽車由西向東以的速度前進(如圖),現(xiàn)在小船在水平面上的點以南的40米處,汽車在橋上點以西的30米處(其中水平面),請畫出合適的空間圖形并求小船與汽車間的最短距離.(不考慮汽車與小船本身的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在(1+x+x2n= x x2+… xr+… x2n1 x2n的展開式中,把D ,D ,D …,D …,D 叫做三項式系數(shù)
(1)求D 的值
(2)根據(jù)二項式定理,將等式(1+x)2n=(1+x)n(x+1)n的兩邊分別展開可得,左右兩邊xn的系數(shù)相等,即C =(C 2+(C 2+(C 2+…+(C 2 , 利用上述思想方法,請計算D C ﹣D C +D C ﹣…+(﹣1)rD C +.. C C 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=﹣4x3+kx,對任意的x∈[﹣1,1],總有f(x)≤1,則實數(shù)k的取值為

查看答案和解析>>

同步練習(xí)冊答案