【題目】已知函數(shù).

(1) 時,證明: ;

(2)當時,直線和曲線切于點,求實數(shù)的值;

(3)當時,不等式恒成立,求實數(shù)的取值范圍.

【答案】(1)見解析;(2);(3).

【解析】試題分析】(1)依據(jù)題設(shè)條件構(gòu)造函數(shù),運用導數(shù)知識求出其最小值,從而使得不等式獲證;(2)先設(shè)切點坐標為 ,然后建立方程組,求得.進而得到;(3)依據(jù)題設(shè)條件將不等式轉(zhuǎn)化為恒成立, 進而分離參數(shù),構(gòu)造函數(shù),將問題轉(zhuǎn)化為求函數(shù)的最小值來求解:

解:(1)記

,

, 遞減;當, 遞增,

,

.

(2)切點為 ,則

,∴

,∴由(1)得.

所以.

(3)由題意可得恒成立,

所以,

下求的最小值,

,

由(1) .

所以, 遞減,

,∴.

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有5名男司機,4名女司機,需選派5人運貨到吳忠.

(1)如果派3名男司機、2名女司機,共有多少種不同的選派方法?

(2)至少有兩名男司機,共有多少種不同的選派方法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)若函數(shù)為定義域上的單調(diào)函數(shù),求實數(shù)的取值范圍;

(Ⅱ)若函數(shù)存在兩個極值點, ,且,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(Ⅰ)函數(shù)f(x)滿足對任意的實數(shù)x,y都有f(xy)=f(x)+f(y),且f(4)=2,求f( )的值; (Ⅱ)已知函數(shù)f(x)是定義在[﹣1,1]上的奇函數(shù),且f(x)在[﹣1,1]上遞增,求不等式f(x+ )+f(x﹣1)<0
的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)的圖象是由y=sin2x向右平移 得到,則下列結(jié)論正確的是(
A.f(0)<f(2)<f(4)
B.f(2)<f(0)<f(4)
C.f(0)<f(4)<f(2)
D.f(4)<f(2)<f(0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—4:坐標系與參數(shù)方程

在平面直角坐標系xOy中,曲線C1的參數(shù)方程為t為參數(shù)).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2

(Ⅰ)求曲線C1C2的直角坐標方程,并分別指出其曲線類型;

(Ⅱ)試判斷:曲線C1C2是否有公共點?如果有,說明公共點的個數(shù);如果沒有,請說明理由;

(Ⅲ)設(shè)是曲線C1上任意一點,請直接寫出a + 2b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)= x·ex, , ,若對任意的,都有成立,則實數(shù)k的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)集合A中含有三個元素3,x,x2﹣2x.
(1)求實數(shù)x應滿足的條件;
(2)若﹣2∈A,求實數(shù)x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的兩個零點為.

(1)求實數(shù)的取值范圍;

(2)求證: .

查看答案和解析>>

同步練習冊答案