【題目】已知個(gè)正整數(shù),它們的平均數(shù)是,中位數(shù)是,唯一眾數(shù)是,則這個(gè)數(shù)方差的最大值為__________.(精確到小數(shù)點(diǎn)后一位)

【答案】12.3

【解析】

根據(jù)題意,由中位數(shù)、眾數(shù)的概念分析,設(shè)這6個(gè)數(shù)為a,3,35,b,c;進(jìn)而分析可得若這6個(gè)數(shù)方差的最大,則a1,b6,c12;由方差公式計(jì)算可得答案.

根據(jù)題意,6個(gè)正整數(shù),它們的平均數(shù)是5,中位數(shù)是4,唯一眾數(shù)是3,

則可以設(shè)這6個(gè)數(shù)為a,33,5b,c;

若這6個(gè)數(shù)方差的最大,6個(gè)數(shù)據(jù)的波動(dòng)幅度較大,此時(shí)a1,c12.

由平均數(shù)為5,所以,則有b6

其方差s2[152+352+352+552+652+1252]12.3;

故答案為:12.3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018614日,世界杯足球賽在俄羅斯拉開帷幕,世界杯給俄羅斯經(jīng)濟(jì)帶來了一定的增長,某紀(jì)念商品店的銷售人員為了統(tǒng)計(jì)世界杯足球賽期間商品的銷售情況,隨機(jī)抽查了該商品商店某天200名顧客的消費(fèi)金額情況,得到如圖頻率分布表:將消費(fèi)顧客超過4萬盧布的顧客定義為足球迷”,消費(fèi)金額不超過4萬盧布的顧客定義為“非足球迷”。

消費(fèi)金額/萬盧布

合計(jì)

顧客人數(shù)

9

31

36

44

62

18

200

(1)求這200名顧客消費(fèi)金額的中位數(shù)與平均數(shù)(同一組中的消費(fèi)金額用該組的中點(diǎn)值作代表;

(2)該紀(jì)念品商店的銷售人員為了進(jìn)一步了解這200名顧客喜歡紀(jì)念品的類型,采用分層抽樣的方法從“非足球迷”,“足球迷”中選取5人,再從這5人中隨機(jī)選取3人進(jìn)行問卷調(diào)查,則選取的3人中“非足球迷”人數(shù)的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某部門在同一上班高峰時(shí)段對(duì)甲、乙兩座地鐵站各隨機(jī)抽取了50名乘客,統(tǒng)計(jì)其乘車等待時(shí)間(指乘客從進(jìn)站口到乘上車的時(shí)間,乘車等待時(shí)間不超過40分鐘).將統(tǒng)計(jì)數(shù)據(jù)按,,,分組,制成頻率分布直方圖:

1)求的值;

2)記表示事件“在上班高峰時(shí)段某乘客在甲站乘車等待時(shí)間少于20分鐘”,試估計(jì)的概率;

3)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間左端點(diǎn)值來估計(jì),記在上班高峰時(shí)段甲、乙兩站各抽取的50名乘客乘車的平均等待時(shí)間分別為,,求的值,并直接寫出的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中為常數(shù)且

(1)若函數(shù)為減函數(shù),求實(shí)數(shù)的取值范圍;

(2)若函數(shù)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體中,點(diǎn)是棱的中點(diǎn),點(diǎn) 在棱上,且為實(shí)數(shù)).

(1)求二面角的余弦值;

(2)當(dāng)時(shí),求直線與平面所成角的正弦值的大;

(3)求證:直線與直線不可能垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】浦東一模之后的“大將” 洗心革面,再也沒進(jìn)過網(wǎng)吧,開始發(fā)奮學(xué)習(xí). 2019年春節(jié)檔非常熱門的電影《流浪地球》引發(fā)了他的思考:假定地球(設(shè)為質(zhì)點(diǎn),地球半徑忽略不計(jì))借助原子發(fā)動(dòng)機(jī)開始流浪的軌道是以木星(看作球體,其半徑約為萬米)的中心為右焦點(diǎn)的橢圓. 已知地球的近木星點(diǎn)(軌道上離木星表面最近的點(diǎn))到木星表面的距離為萬米,遠(yuǎn)木星點(diǎn)(軌道上離木星表面最遠(yuǎn)的點(diǎn))到木星表面的距離為萬米.

(1)求如圖給定的坐標(biāo)系下橢圓的標(biāo)準(zhǔn)方程;

(2)若地球在流浪的過程中,由第一次逆時(shí)針流浪到與軌道中心的距離為萬米時(shí)(其中分別為橢圓的長半軸、短半軸的長),由于木星引力,部分原子發(fā)動(dòng)機(jī)突然失去了動(dòng)力,此時(shí)地球向著木星方向開始變軌(如圖所示),假定地球變軌后的軌道為一條直線,稱該直線的斜率為“變軌系數(shù)”. 求“變軌系數(shù)”的取值范圍,使地球與木星不會(huì)發(fā)生碰撞. (精確到小數(shù)點(diǎn)后一位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解某產(chǎn)品的獲利情況,將今年17月份的銷售收入(單位:萬元)與純利潤(單位:萬元)的數(shù)據(jù)進(jìn)行整理后,得到如下表格:

月份

1

2

3

4

5

6

7

銷售收入

13

13.5

13.8

14

14.2

14.5

15

純利潤

3.2

3.8

4

4.2

4.5

5

5.5

該公司先從這7組數(shù)據(jù)中選取5組數(shù)據(jù)求純利潤關(guān)于銷售收入的線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).假設(shè)選取的是2月至6月的數(shù)據(jù).

1)求純利潤關(guān)于銷售收入的線性回歸方程(精確到0.01);

2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢驗(yàn)數(shù)據(jù)的誤差均不超過0.1萬元,則認(rèn)為得到的線性回歸方程是理想的.試問該公司所得線性回歸方程是否理想?

參考公式:,,;參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家統(tǒng)計(jì)局統(tǒng)計(jì)了我國近10年(2009年2018年)的GDP(GDP是國民經(jīng)濟(jì)核算的核心指標(biāo),也是衡量一個(gè)國家或地區(qū)總體經(jīng)濟(jì)狀況的重要指標(biāo))增速的情況,并繪制了下面的折線統(tǒng)計(jì)圖.

根據(jù)該折線統(tǒng)計(jì)圖,下面說法錯(cuò)誤的是

A. 這10年中有3年的GDP增速在9.00%以上

B. 從2010年開始GDP的增速逐年下滑

C. 這10年GDP仍保持6.5%以上的中高速增長

D. 2013年—2018年GDP的增速相對(duì)于2009年—2012年,波動(dòng)性較小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面平面,,,分別為線段上的點(diǎn),且,.

(1)求證:平面

(2)若直線與平面所成的角為,求平面與平面所成的銳二面角.

查看答案和解析>>

同步練習(xí)冊(cè)答案