【題目】如圖,在三棱柱中,平面,四邊形為菱形.
(Ⅰ)證明:平面;
(Ⅱ)若,,二面角的余弦值為,求三棱錐的體積.
【答案】(Ⅰ)證明見解析;(Ⅱ).
【解析】
(Ⅰ)分別證明和即可;
(Ⅱ)以B為坐標原點,分別以,BC所在的直線為x軸和z軸,以過B點垂直平面的直線為y軸,建立空間直角坐標系如圖所示,首先算出平面的法向量的坐標,為平面的一個法向量,然后由二面角的余弦值為求出,然后可算出三棱錐的體積.
(Ⅰ)因為四邊形為菱形,所以.
因為平面,平面,所以.
又因為,平面,平面,
所以平面.
(Ⅱ)以B為坐標原點,分別以,BC所在的直線為x軸和z軸,
以過B點垂直平面的直線為y軸,建立空間直角坐標系如圖所示.
設(shè),則,,,
.所以,.
設(shè)平面的法向量為,則
即令,得.
由條件知為平面的一個法向量.
設(shè)二面角的平面角為,易知為銳角.
則,解得.
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1是某高架橋箱梁的橫截面,它由上部路面和下部支撐箱兩部分組成.如圖2,路面寬度,下部支撐箱CDEF為等腰梯形(),且.為了保證承重能力與穩(wěn)定性,需下部支撐箱的面積為,高度為2m且,若路面AB.側(cè)邊CF和DE,底部EF的造價分別為4a千元/m,5a千元/m,6a千元/m(a為正常數(shù)),.
(1)試用θ表示箱梁的總造價y(千元);
(2)試確定cosθ的值,使總造價最低?并求最低總造價.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某校組織的一次籃球定點投籃比賽中,兩人一對一比賽規(guī)則如下:若某人某次投籃命中,則由他繼續(xù)投籃,否則由對方接替投籃. 現(xiàn)由甲、乙兩人進行一對一投籃比賽,甲和乙每次投籃命中的概率分別是,.兩人共投籃3次,且第一次由甲開始投籃. 假設(shè)每人每次投籃命中與否均互不影響.則3次投籃的人依次是甲、甲、乙的概率___________;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】針對某新型病毒,某科研機構(gòu)已研發(fā)出甲乙兩種疫苗,為比較兩種疫苗的效果,選取100名志愿者,將他們隨機分成兩組,每組50人.第一組志愿者注射甲種疫苗,第二組志愿者注射乙種疫苗,經(jīng)過一段時間后,對這100名志愿者進行該新型病毒抗體檢測,發(fā)現(xiàn)有的志愿者未產(chǎn)生該新型病毒抗體,在未產(chǎn)生該新型病毒抗體的志愿者中,注射甲種疫苗的志愿者占.
產(chǎn)生抗體 | 未產(chǎn)生抗體 | 合計 | |
甲 | |||
乙 | |||
合計 |
(1)根據(jù)題中數(shù)據(jù),完成列聯(lián)表;
(2)根據(jù)(1)中的列聯(lián)表,判斷能否有的把握認為甲乙兩種疫苗的效果有差異.
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),是的導(dǎo)函數(shù).
(1)若,當時,函數(shù)在內(nèi)有唯一的極大值,求的取值范圍;
(2)若,,試研究的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,二面角α﹣1﹣β的平面角的大小為60°,A,B是1上的兩個定點,且AB=2.C∈α,D∈β,滿足AB與平面BCD所成的角為30°,且點A在平面BCD上的射影H在△BCD的內(nèi)部(包括邊界),則點H的軌跡的長度等于( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在年的自主招生考試成績中隨機抽取名學(xué)生的筆試成績,按成績共分五組,得到如下的頻率分布表:
組號 | 分組 | 頻數(shù) | 頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 |
(1)請寫出頻率分布表中、、的值,若同組中的每個數(shù)據(jù)用該組區(qū)間的中間值代替,請估計全體考生的平均成績;
(2)為了能選出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第、、組中用分層抽樣的方法抽取名考生進入第二輪面試,求第、、組中每組各抽取多少名考生進入第二輪的面試;
(3)在(2)的前提下,學(xué)校要求每個學(xué)生需從、兩個問題中任選一題作為面試題目,求第三組和第五組中恰好有個學(xué)生選到問題的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1,F2為橢圓C:的左、右焦點,橢圓C過點M,且MF2⊥F1F2.
(1)求橢圓C的方程;
(2)經(jīng)過點P(2,0)的直線交橢圓C于A,B兩點,若存在點Q(m,0),使得|QA|=|QB|.
①求實數(shù)m的取值范圍:
②若線段F1A的垂直平分線過點Q,求實數(shù)m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com