【題目】已知圓C經(jīng)過(guò)點(diǎn),且圓心在直線

1)求圓C的方程.

2)過(guò)點(diǎn)的直線與圓C交于A,B兩點(diǎn),問(wèn):在直線上是否存在定點(diǎn)N,使得,分別為直線AN,BN的斜率)恒成立?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】1;(2)存在定點(diǎn),使得恒成立

【解析】

1的垂直平分線與直線的交點(diǎn)就是圓心,求出圓心即可得到半徑,圓的方程得解;

2)設(shè)直線AB的方程為,聯(lián)立直線與圓的方程,消去y整理得,根據(jù)建立等式,結(jié)合韋達(dá)定理求出定點(diǎn),檢驗(yàn)直線斜率為0和斜率不存在的情況.

1)由題可知線段EF的中點(diǎn)為,EF的垂直平分線的斜率為5

的垂直平分線的方程為.

EF的垂直平分線與直線l的交點(diǎn)即為圓心C,

,解得,即.

,

C的方程為.

2)當(dāng)直線AB的斜率存在且不為0時(shí),設(shè)直線AB的斜率為k,則過(guò)點(diǎn)的直線AB的方程為,由,消去y整理得.

設(shè),

.*

設(shè),則.

,

,,

,

將(*)式代入得

解得故點(diǎn)N的坐標(biāo)為.

當(dāng)直線AB的斜率為0時(shí),顯然點(diǎn)可使成立.

當(dāng)直線AB的斜率不存在時(shí),直線AB的方程為,,顯然點(diǎn)N可使成立.

在直線上存在定點(diǎn)使得恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的圖象的對(duì)稱(chēng)軸之間的最短距離為,且經(jīng)過(guò)點(diǎn).

1)寫(xiě)出函數(shù)的解析式;

2)若對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍;

3)求實(shí)數(shù)和正整數(shù),使得上恰有2017個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】α是第一象限角,則sinα+cosα的值與1的大小關(guān)系是( )

A. sinα+cosα1B. sinα+cosα=1C. sinα+cosα1D. 不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,橢圓的極坐標(biāo)方程為,其左焦點(diǎn)在直線上.

(1)若直線與橢圓交于兩點(diǎn),求的值;

(2)求橢圓的內(nèi)接矩形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,FPC的中點(diǎn),AF⊥PB

1)求PA的長(zhǎng);

2)求二面角B﹣AF﹣D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,ABAD,BCBD,平面ABD⊥平面BCD,點(diǎn)E,F(EA,D不重合)分別在棱AD,BD上,且EFAD.

求證:(1)EF∥平面ABC;

(2)ADAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】的方格表中,每個(gè)格被染上紅、藍(lán)、黃、綠四種顏色之一,若每個(gè)的子方格表包含每種顏色的格均為一,稱(chēng)此染法為“均衡”的.則所有不同的均衡的染法有__________種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)在區(qū)間上的圖像如圖所示,將該函數(shù)圖像上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的一半(縱坐標(biāo)不變,再向右平移個(gè)單位長(zhǎng)度后,所得到的圖像關(guān)于直線對(duì)稱(chēng),則的最小值為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示.

(1)求函數(shù)的解析式;

(2)設(shè),且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍和這兩個(gè)根的和.

查看答案和解析>>

同步練習(xí)冊(cè)答案