【題目】已知cos(π+α) = ,且 <α< ,求sin α與cos α的值.

【答案】解:cos(π+α)=﹣cos α, =﹣sin α. ∴sin αcos α= ,即2sin αcos α=
又∵sin2α+cos2α=1,②
②+①得(sin α+cos α)2= ,
②-①得(sin α﹣cos α)2= ,
又∵ <α< ,
∴sin α>cos α>0,
即sin α+cos α>0,sin α﹣cos α>0,
∴sin α+cos α= ,③
sin α﹣cos α= ,④
③+④得sin α= ,③-④得cos α=
【解析】由已知利用誘導(dǎo)公式可求2sin αcos α= ,結(jié)合同角三角函數(shù)基本關(guān)系式可求:(sin α+cos α)2= ,(sin α﹣cos α)2= ,結(jié)合α的范圍可求sin α+cos α>0,sin α﹣cos α>0,可求sin α+cos α= ,sin α﹣cos α= ,聯(lián)立即可得解.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解兩角和與差的正弦公式的相關(guān)知識(shí),掌握兩角和與差的正弦公式:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)常數(shù)

(1)若處取得極小值為,求的值;

(2)對(duì)于任意給定的正實(shí)數(shù)、,證明:存在實(shí)數(shù),當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,b=
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)F1 , F2分別為橢圓的左、右焦點(diǎn),A、B為橢圓的左、右頂點(diǎn),P為橢圓C上的點(diǎn),求證:以PF2為直徑的圓與以AB為直徑的圓相切;
(3)過左焦點(diǎn)F1作互相垂直的弦MN與GH,判斷MN的中點(diǎn)與GH的中點(diǎn)所在直線l是否過x軸上的定點(diǎn),如果是,求出定點(diǎn)坐標(biāo),如果不是,說出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒子裝有六張卡片,上面分別寫著如下六個(gè)函數(shù):

.

)從中任意拿取張卡片,中至少有一張卡片上寫著的函數(shù)為奇函數(shù),在此條件下,求兩張卡片上寫著的函數(shù)相加得到的新函數(shù)為奇函數(shù)的概率;

)現(xiàn)從盒子中逐一抽取卡片,且每次取出后均不放回,若取到一張寫有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進(jìn)行,求抽取次數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ).

(1)如果曲線在點(diǎn)處的切線方程為,求, 的值;

(2)若, ,關(guān)于的不等式的整數(shù)解有且只有一個(gè),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為緩解高三學(xué)生的高考?jí)毫,?jīng)常舉行一些心理素質(zhì)綜合能力訓(xùn)練活動(dòng),經(jīng)過一段時(shí)間的訓(xùn)練后從該年級(jí)800名學(xué)生中隨機(jī)抽取100名學(xué)生進(jìn)行測試,并將其成績分為、、五個(gè)等級(jí),統(tǒng)計(jì)數(shù)據(jù)如圖所示(視頻率為概率),根據(jù)以上抽樣調(diào)查數(shù)據(jù),回答下列問題:

(1)試估算該校高三年級(jí)學(xué)生獲得成績?yōu)?/span>的人數(shù);

(2)若等級(jí)、、、分別對(duì)應(yīng)100分、90分、80分、70分、60分,學(xué)校要求平均分達(dá)90分以上為“考前心理穩(wěn)定整體過關(guān)”,請問該校高三年級(jí)目前學(xué)生的“考前心理穩(wěn)定整體”是否過關(guān)?

(3)為了解心理健康狀態(tài)穩(wěn)定學(xué)生的特點(diǎn),現(xiàn)從、兩種級(jí)別中,用分層抽樣的方法抽取11個(gè)學(xué)生樣本,再從中任意選取3個(gè)學(xué)生樣本分析,求這3個(gè)樣本為級(jí)的個(gè)數(shù)的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,a、b、c分別為∠A,∠B,∠C的對(duì)邊,如果a、b、c成等差數(shù)列,∠B=30°,△ABC的面積為 ,那么b等于(
A.
B.1+
C.
D.2+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}中,a1=﹣3,11a5=5a8 , 前n項(xiàng)和為Sn
(1)求an;
(2)當(dāng)n為何值時(shí),Sn最。坎⑶骃n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點(diǎn)也是橢圓 )的一個(gè)焦點(diǎn), 的公共弦長為.

(Ⅰ)求的方程

(Ⅱ)過點(diǎn)的直線相交于, 兩點(diǎn),與相交于 兩點(diǎn),且 同向.若求直線的斜率;

查看答案和解析>>

同步練習(xí)冊答案