【題目】已知函數(shù)f(x)對(duì)一切實(shí)數(shù)x,y都有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)若g(x)=kx﹣2k+5,對(duì)任意的m∈[1,4],總存在n∈[1,4],使得f(m)=g(n)成立,求實(shí)數(shù)k的取值范圍.
【答案】
(1)解:令x=﹣1,y=1,則由已知f(0)﹣f(1)=﹣1(﹣1+2+1)
∴f(0)=﹣2
(2)解:令y=0,則f(x)﹣f(0)=x(x+1)
又∵f(0)=﹣2
∴f(x)=x2+x﹣2
(3)解:記f(x)=x2+x﹣2,x∈[1,4],值域?yàn)锳,g(x)=kx﹣2k+5,x∈[1,4],值域?yàn)锽,
∵對(duì)任意的m∈[1,4],總存在n∈[1,4]使f(m)=g(n),
∴AB
又f(x)=x2+x﹣2的對(duì)稱軸 ,
∴f(x)在[1,4]上單增,
∴f(x)min=0,f(x)max=18,
∴A=[0,18]
又g(x)=kx﹣2k+5,x∈[1,4]
①當(dāng)k=0時(shí),g(x)=5,
∴B={5}不合題意;
②當(dāng)k>0時(shí),g(x)在[1,4]上單增,
∴B=[5﹣k,2k+5],又AB
∴ ,
∴
③當(dāng)k<0時(shí),g(x)在[1,4]上單減,
∴B=[2k+5,5﹣k],又AB
∴ ,
∴k≤﹣13
所以k的取值范圍為:k≤﹣13或
【解析】(1)利用賦值法,令x=﹣1,y=1,可求f(0)(2)利用賦值法,令y=0,則f(x)﹣f(0)=x(x+1),結(jié)合f(0)=﹣2可求(3)設(shè)函數(shù)f(x)x∈[1,4]的值域?yàn)锳,g(x),x∈[1,4]的值域?yàn)锽,由題意可得AB,由二次函數(shù)的性質(zhì)可求A,對(duì)g(x)=kx﹣2k+5,x∈[1,4],分類討論:①當(dāng)k=0時(shí),②當(dāng)k>0,③當(dāng)k<0時(shí),結(jié)合函數(shù)g(x)在[1,4]上單調(diào)性可求B,從而可求k的范圍
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的性質(zhì)和二次函數(shù)在閉區(qū)間上的最值的相關(guān)知識(shí)可以得到問題的答案,需要掌握當(dāng)時(shí),拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開口向下,函數(shù)在上遞增,在上遞減;當(dāng)時(shí),當(dāng)時(shí),;當(dāng)時(shí)在上遞減,當(dāng)時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x﹣8,g(x)=2x2﹣4x﹣16,
(1)求不等式g(x)<0的解集;
(2)若對(duì)一切x>2,均有f(x)≥(m+2)x﹣m﹣15成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)是定義在R上的奇函數(shù),且在(﹣∞,0]上滿足 <0,且f(1)=0,則使得 <0的x的取值范圍是( )
A.(﹣∞,1)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣1,0)∪(1,+∞)
D.(﹣1,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.
現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50 m/min,在甲出發(fā)2 min后,乙從A乘纜車到B,在B處停留1 min后,再?gòu)腂勻速步行到C.假設(shè)纜車勻速直線運(yùn)行的速度為130 m/min,山路AC長(zhǎng)為1 260 m,經(jīng)測(cè)量,cos A=,cos C=.
(1)求索道AB的長(zhǎng);
(2)問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?
(3)為使兩位游客在C處互相等待的時(shí)間不超過3分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+a|+|x﹣2|
(1)當(dāng)a=﹣3時(shí),求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直四棱柱ABCD﹣A1B1C1D1 , DD1⊥底面ABCD,底面ABCD為平行四邊形,∠DAB=45°,且AD,AB,AA1三條棱的長(zhǎng)組成公比為 的等比數(shù)列,
(1)求異面直線AD1與BD所成角的大;
(2)求二面角B﹣AD1﹣D的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com