【題目】軸截面是邊長(zhǎng)為4 的等邊三角形的圓錐的直觀圖如圖所示,過底面圓周上任一點(diǎn)作一平面α,且α與底面所成的二面角為 ,已知α與圓錐側(cè)面交線的曲線為橢圓,則此橢圓的離心率為( )
A.
B.
C.
D.
【答案】C
【解析】解答:本題綜合考查空間幾何體中的線面關(guān)系與解析幾何中直線與直線的位置關(guān)系以及平面幾何中圓的相關(guān)定理的應(yīng)用,意在考查數(shù)形結(jié)合思想與空間想象能力.
如圖,根據(jù)軸截面是邊長(zhǎng)為4 的等邊三角形,可知橢圓的長(zhǎng)軸長(zhǎng)為AB=6,設(shè)O為橢圓的中心,則a=OB=OA=3,過O作平行于底面的平面,可得到截面圓,交橢圓于兩點(diǎn)C、D,則C、D即是橢圓短半軸的頂點(diǎn).根據(jù)題意知AB⊥BF,在直角三角形OBF中,∠OBF=90°,所以FO=2 ,F是BP的中點(diǎn),過點(diǎn)B作AP的平行線,交AM于點(diǎn)G,則E是AG的中點(diǎn),所以O(shè)E= AP= ,由相交弦定理得CO2=OF×OE,所以b2=6,所以c2=a2-b2=3,所以橢圓的離心率為 .
分析:本題主要考查了平面與圓錐面的截線,解決問題的關(guān)鍵是根據(jù)平面與圓錐面的截線滿足的有關(guān)條件通過構(gòu)造輔助線結(jié)合所學(xué)橢圓性質(zhì)及相交弦定理計(jì)算即可
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某市學(xué)生百米運(yùn)動(dòng)成績(jī),從該市學(xué)生中按照男女生比例隨機(jī)抽取50名學(xué)生進(jìn)行百米測(cè)試,測(cè)試成績(jī)?nèi)慷冀橛?3秒到18秒之間,將測(cè)試結(jié)果按如下方式分成五組,第一組[13,14),第二組[14,15),…,第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.
(1)設(shè)m,n表示樣本中兩個(gè)學(xué)生的百米測(cè)試成績(jī),已知m,n∈[13,14)∪[17,18],求事件“|m-n|>2”的概率;
(2)根據(jù)有關(guān)規(guī)定,成績(jī)小于16秒為達(dá)標(biāo).
如果男女生使用相同的達(dá)標(biāo)標(biāo)準(zhǔn),則男女生達(dá)標(biāo)情況如附表:
根據(jù)上表數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為“體育達(dá)標(biāo)與性別有關(guān)”?若有,你能否提出一個(gè)更好的解決方法來?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班主任對(duì)全班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
積極參加班級(jí)工作 | 不太主動(dòng)參加班級(jí)工作 | 合計(jì) | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
合計(jì) | 24 | 26 | 50 |
參考公式及數(shù)據(jù):
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
(1)如果隨機(jī)抽查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析:學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān)系?并說明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)P在☉O外,PC是☉O的切線,切點(diǎn)為C,直線PO與☉O相交于點(diǎn)A,B.
(1)試探索∠BCP與∠P的數(shù)量關(guān)系;
(2)若∠A=30°,則PB與PA有什么關(guān)系?
(3)∠A可能等于45°嗎?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在底面半徑為6的圓柱內(nèi),有兩個(gè)半徑也為6的球面,兩球的球心距為13,若作一個(gè)平面與兩個(gè)球都相切,且與圓柱面相交成一橢圓,則橢圓的長(zhǎng)軸長(zhǎng)為。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實(shí)數(shù),函數(shù).
(1)求的極值;
(2)當(dāng)在什么范圍內(nèi)取值時(shí),曲線與軸僅有一個(gè)交點(diǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)當(dāng)m=-1時(shí),求A∪B;
(2)若AB,求實(shí)數(shù)m的取值范圍;
(3)若A∩B=,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com