【題目】某校后勤處為跟蹤調(diào)查該校餐廳的當(dāng)月的服務(wù)質(zhì)量,兌現(xiàn)獎懲,從就餐的學(xué)生中隨機抽出100位學(xué)生對餐廳服務(wù)質(zhì)量打分(5分制),得到如下柱狀圖:
(1)從樣本中任意選取2名學(xué)生,求恰好有一名學(xué)生的打分不低于4分的概率;
(2)若以這100人打分的頻率作為概率,在該校隨機選取2名學(xué)生進行打分(學(xué)生打分之間相互獨立)記表示兩人打分之和,求的分布列和.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程是(為參數(shù)).以坐標(biāo)原點為極點,以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)點,若直線與曲線交于, 兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線過點,求曲線在點處的切線方程;
(2)求函數(shù)在區(qū)間上的最大值;
(3)若函數(shù)有兩個不同的零點, ,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知圓的參數(shù)方程為(為參數(shù)),若是圓與軸正半軸的交點,以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,設(shè)過點的圓的切線為.
(1)求直線的極坐標(biāo)方程;
(2)求圓上到直線的距離最大的點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司在迎新年晚會上舉行抽獎活動,有甲、乙兩個抽獎方案供員工選擇;
方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率為.第一次抽獎,若未中獎,則抽獎結(jié)束.若中獎,則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進行第二次抽獎;若正面朝上,員工則須進行第二次抽獎,且在第二次抽獎中,若中獎,獲得獎金1000元;若未中獎,則所獲獎金為0元.
方案乙:員工連續(xù)三次抽獎,每次中獎率均為,每次中獎均可獲獎金400元.
(1)求某員工選擇方案甲進行抽獎所獲獎金(元)的分布列;
(2)某員工選擇方案乙與選擇方案甲進行抽獎,試比較哪個方案更劃算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2015年12月,京津冀等地數(shù)城市指數(shù)“爆表”,北方此輪污染為2015年以來最嚴重的污染過程,為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與的數(shù)據(jù)如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期七 |
車流量(萬輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
的濃度(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散點圖知與具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;
的濃度;
(ii)規(guī)定:當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為優(yōu);當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為良,為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量在多少萬輛以內(nèi)?(結(jié)果以萬輛為單位,保留整數(shù))
參考公式:回歸直線的方程是,其中, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若,求函數(shù)的極值.
(2)若在有唯一的零點,求的取值范圍.
(3)若,設(shè),求證: 在內(nèi)有唯一的零點,且對(2)中的,滿足.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】計劃在某水庫建一座至多安裝臺發(fā)電機的水電站,過去年的水文資料顯示,水庫年入流量(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上,不足的年份有年,不低于且不超過的年份有年,超過的年份有年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨立.
(1)求未來年中,設(shè)表示流量超過的年數(shù),求的分布列及期望;
(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量限制,并有如下關(guān)系:
年入流量 | |||
發(fā)電機最多可運行臺數(shù) |
若某臺發(fā)電機運行,則該臺年利潤為萬元,若某臺發(fā)電機未運行,則該臺年虧損萬元,欲使水電站年總利潤的均值達到最大,應(yīng)安裝發(fā)電機多少臺?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面幾種推理過程是演繹推理的是 ( )
A. 某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人數(shù)超過50人
B. 兩條直線平行,同旁內(nèi)角互補,如果∠A與∠B是兩條平行直線的同旁內(nèi)角,則∠A+∠B=180°
C. 由平面三角形的性質(zhì),推測空間四邊形的性質(zhì)
D. 在數(shù)列{an}中,a1=1,an= (an-1+)(n≥2),由此歸納出{an}的通項公
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com