【題目】如圖,已知雙曲線C1 ,曲線C2:|y|=|x|+1,P是平面內(nèi)一點(diǎn),若存在過(guò)點(diǎn)P的直線與C1 , C2都有公共點(diǎn),則稱P為“C1﹣C2型點(diǎn)”

(1)在正確證明C1的左焦點(diǎn)是“C1﹣C2型點(diǎn)”時(shí),要使用一條過(guò)該焦點(diǎn)的直線,試寫(xiě)出一條這樣的直線的方程(不要求驗(yàn)證);
(2)設(shè)直線y=kx與C2有公共點(diǎn),求證|k|>1,進(jìn)而證明原點(diǎn)不是“C1﹣C2型點(diǎn)”;
(3)求證:圓x2+y2= 內(nèi)的點(diǎn)都不是“C1﹣C2型點(diǎn)”

【答案】
(1)解:C1的左焦點(diǎn)為( ),寫(xiě)出的直線方程可以是以下形式:

,其中


(2)證明:因?yàn)橹本y=kx與C2有公共點(diǎn),

所以方程組 有實(shí)數(shù)解,因此|kx|=|x|+1,得

若原點(diǎn)是“C1﹣C2型點(diǎn)”,則存在過(guò)原點(diǎn)的直線與C1、C2都有公共點(diǎn).

考慮過(guò)原點(diǎn)與C2有公共點(diǎn)的直線x=0或y=kx(|k|>1).

顯然直線x=0與C1無(wú)公共點(diǎn).

如果直線為y=kx(|k|>1),則由方程組 ,得 ,矛盾.

所以直線y=kx(|k|>1)與C1也無(wú)公共點(diǎn).

因此原點(diǎn)不是“C1﹣C2型點(diǎn)”


(3)證明:記圓O: ,取圓O內(nèi)的一點(diǎn)Q,設(shè)有經(jīng)過(guò)Q的直線l與C1,C2都有公共點(diǎn),顯然l不與x軸垂直,

故可設(shè)l:y=kx+b.

若|k|≤1,由于圓O夾在兩組平行線y=x±1與y=﹣x±1之間,因此圓O也夾在直線y=kx±1與y=﹣kx±1之間,

從而過(guò)Q且以k為斜率的直線l與C2無(wú)公共點(diǎn),矛盾,所以|k|>1.

因?yàn)閘與C1由公共點(diǎn),所以方程組 有實(shí)數(shù)解,

得(1﹣2k2)x2﹣4kbx﹣2b2﹣2=0.

因?yàn)閨k|>1,所以1﹣2k2≠0,

因此△=(4kb)2﹣4(1﹣2k2)(﹣2b2﹣2)=8(b2+1﹣2k2)≥0,

即b2≥2k2﹣1.

因?yàn)閳AO的圓心(0,0)到直線l的距離

所以 ,從而 ,得k2<1,與|k|>1矛盾.

因此,圓 內(nèi)的點(diǎn)不是“C1﹣C2型點(diǎn)”


【解析】(1)由雙曲線方程可知,雙曲線的左焦點(diǎn)為( ),當(dāng)過(guò)左焦點(diǎn)的直線的斜率不存在時(shí)滿足左焦點(diǎn)是“C1﹣C2型點(diǎn)”,當(dāng)斜率存在時(shí),要保證斜率的絕對(duì)值大于等于該焦點(diǎn)與(0,1)連線的斜率;(2)由直線y=kx與C2有公共點(diǎn)聯(lián)立方程組有實(shí)數(shù)解得到|k|>1,分過(guò)原點(diǎn)的直線斜率不存在和斜率存在兩種情況說(shuō)明過(guò)遠(yuǎn)點(diǎn)的直線不可能同時(shí)與C1和C2有公共點(diǎn);(3)由給出的圓的方程得到圓的圖形夾在直線y=x±1與y=﹣x±1之間,進(jìn)而說(shuō)明當(dāng)|k|≤1時(shí)過(guò)圓 內(nèi)的點(diǎn)且斜率為k的直線與C2無(wú)公共點(diǎn),當(dāng)|k|>1時(shí),過(guò)圓 內(nèi)的點(diǎn)且斜率為k的直線與C2有公共點(diǎn),再由圓心到直線的距離小于半徑列式得出k的范圍,結(jié)果與|k|>1矛盾.從而證明了結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解點(diǎn)到直線的距離公式的相關(guān)知識(shí),掌握點(diǎn)到直線的距離為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求曲線在點(diǎn)處的切線方程;

(2)求函數(shù)的零點(diǎn)和極值;

(3)若對(duì)任意,都有成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,當(dāng)P(x,y)不是原點(diǎn)時(shí),定義P的“伴隨點(diǎn)”為P′( , );當(dāng)P是原點(diǎn)時(shí),定義P的“伴隨點(diǎn)”為它自身,平面曲線C上所有點(diǎn)的“伴隨點(diǎn)”所構(gòu)成的曲線C′定義為曲線C的“伴隨曲線”.現(xiàn)有下列命題:
①若點(diǎn)A的“伴隨點(diǎn)”是點(diǎn)A′,則點(diǎn)A′的“伴隨點(diǎn)”是點(diǎn)A;
②單位圓的“伴隨曲線”是它自身;
③若曲線C關(guān)于x軸對(duì)稱,則其“伴隨曲線”C′關(guān)于y軸對(duì)稱;
④一條直線的“伴隨曲線”是一條直線.
其中的真命題是(寫(xiě)出所有真命題的序列).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.E為棱AD的中點(diǎn),異面直線PA與CD所成的角為90°.

(1)在平面PAB內(nèi)找一點(diǎn)M,使得直線CM∥平面PBE,并說(shuō)明理由;
(2)若二面角P﹣CD﹣A的大小為45°,求直線PA與平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,已知直線 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)的極坐標(biāo)為,直線與曲線的交點(diǎn)為, ,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知邊長(zhǎng)為 的菱形ABCD中,∠BAD=60°,沿對(duì)角線BD折成二面角A﹣BD﹣C為120°的四面體ABCD,則四面體的外接球的表面積為(
A.25π
B.26π
C.27π
D.28π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)已知是奇函數(shù),求常數(shù)m的值;

(2)畫(huà)出函數(shù)的圖象,并利用圖象回答:k為何值時(shí),方程 無(wú)解?有一解?有兩解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:①設(shè)有一個(gè)回歸方程,變量增加一個(gè)單位時(shí),平均增加個(gè)單位;②線性回歸直線必過(guò)必過(guò)點(diǎn);③在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,從獨(dú)立性檢驗(yàn)知,有的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),我們說(shuō)某人吸煙,那么他有的可能患肺病;其中錯(cuò)誤的個(gè)數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax﹣lnx,a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈(0,e]時(shí),求g(x)=e2x﹣lnx的最小值;
(3)當(dāng)x∈(0,e]時(shí),證明:e2x﹣lnx﹣

查看答案和解析>>

同步練習(xí)冊(cè)答案