(2012•包頭一模)函數(shù)f(x)=sin(ωx+?)(其中|?|<
π
2
)的圖象如圖所示,為了得到y(tǒng)=sinωx的圖象,只需把y=f(x)的圖象上所有點(  )
分析:根據(jù)周期求出ω,再由五點法作圖求出∅,從而得到函數(shù)f(x)=sin2(x+
π
6
),故把y=f(x)的圖象向右平移
π
6
個單位長度可得y=sinωx的圖象,從而得出結(jié)論.
解答:解:由題意可得
1
4
×
ω
=
12
-
π
3
=
π
4
,∴ω=2.
再由五點法作圖可得 2×
π
3
+∅=π,∴∅=
π
3
,故函數(shù)f(x)=sin(ωx+?)=sin(2x+
π
3
)=sin2(x+
π
6
).
故把y=f(x)的圖象向右平移
π
6
個單位長度可得y=sinωx的圖象,
故選A.
點評:本題主要考查由函數(shù)y=Asin(ωx+∅)的部分圖象求函數(shù)的解析式,函數(shù)y=Asin(ωx+∅)的圖象變換,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•包頭一模)在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,PA=2,AB=1.
(Ⅰ)求四棱錐P-ABCD的體積V;
(Ⅱ)若F為PC的中點,求證:平面PAC⊥平面AEF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•包頭一模)下列命題錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•包頭一模)已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)與拋物線y2=8x有 一個公共的焦點F,且兩曲線的一個交點為P,若|PF|=5,則雙曲線方程為
x2-
y2
3
=1
x2-
y2
3
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•包頭一模)在平面直角坐標系xoy中,曲線C1的參數(shù)方程為 
x=acosφ
y=bsinφ
(a>b>0,?為參數(shù)),在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線C2是圓心在極軸上,且經(jīng)過極點的圓.已知曲線C1上的點M(1,
3
2
)對應的參數(shù)φ=
π
3
,曲線C2過點D(1,
π
3
).
(Ⅰ)求曲線C1,C2的直角坐標方程;
(Ⅱ)若點A(ρ 1,θ),B(ρ 2,θ+
π
2
) 在曲線C1上,求
1
ρ
2
1
+
1
ρ
2
2
的值.

查看答案和解析>>

同步練習冊答案