【題目】已知橢圓的右焦點為.直線被稱作為橢圓的一條準線.點在橢圓上(異于橢圓左、右頂點),過點作直線與橢圓相切,且與直線相交于點.
(1)求證:.
(2)若點在軸的上方,,求面積的最小值.
科目:高中數(shù)學 來源: 題型:
【題目】為迎接2022年冬奧會,某市組織中學生開展冰雪運動的培訓活動,并在培訓結(jié)束后對學生進行了考核.記表示學生的考核成績,并規(guī)定為考核優(yōu)秀.為了了解本次培訓活動的效果,在參加培訓的學生中隨機抽取了30名學生的考核成績,并作成如圖所示的莖葉圖:
(1)從參加培訓的學生中隨機選取1人,請根據(jù)圖中數(shù)據(jù),估計這名學生考核為優(yōu)秀的概率;
(2)從圖中考核成績滿足的學生中任取3人,設表示這3人中成績滿足的人數(shù),求的分布列和數(shù)學期望;
(3)根據(jù)以往培訓數(shù)據(jù),規(guī)定當時培訓有效.請你根據(jù)圖中數(shù)據(jù),判斷此次冰雪培訓活動是否有效,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線與過點的直線交于兩點.
(1)若,求直線的方程;
(2)若,軸,垂足為,探究:以為直徑的圓是否過定點?若是,求出該定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校在圓心角為直角,半徑為的扇形區(qū)域內(nèi)進行野外生存訓練.如圖所示,在相距的,兩個位置分別為300,100名學生,在道路上設置集合地點,要求所有學生沿最短路徑到點集合,記所有學生進行的總路程為.
(1)設,寫出關于的函數(shù)表達式;
(2)當最小時,集合地點離點多遠?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的右頂點為,離心率為,點在橢圓上,點與點關于原點對稱.
(1)求橢圓的標準方程;
(2)求經(jīng)過點,且和軸相切的圓的方程;
(3)若,是橢圓上異于,的兩個點,且,點在直線的上方,試判斷的平分線是否經(jīng)過軸上的一個定點?若是,求出該定點坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若存在,使得對任意恒成立,則函數(shù)在上有下界,其中為函數(shù)的一個下界;若存在,使得對任意恒成立,則函數(shù)在上有上界,其中為函數(shù)的一個上界.如果一個函數(shù)既有上界又有下界,那么稱該函數(shù)有界.
下述四個結(jié)論:①1不是函數(shù)的一個下界;②函數(shù)有下界,無上界;③函數(shù)有上界,無下界;④函數(shù)有界.
其中所有正確結(jié)論的編號是( )
A.①②B.②④C.③④D.②
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C的對邊分別為a,b,c,且,若f(A)=1,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,分別為橢圓的左、右焦點,點在橢圓上,且軸,的周長為6.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點的直線與橢圓交于,兩點,設為坐標原點,是否存在常數(shù),使得恒成立?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義在上的偶函數(shù),其圖象關于點對稱.以下關于的結(jié)論:①是周期函數(shù);②滿足;③在單調(diào)遞減;④是滿足條件的一個函數(shù).其中正確結(jié)論的個數(shù)是( )
A.4B.3C.2D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com