如圖,已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的一條準(zhǔn)線方程是x=
25
4
,其左、右頂點(diǎn)分別是A、B;雙曲線C2
x2
a2
-
y2
b2
=1
的一條漸近線方程為3x-5y=0.
(1)求橢圓C1的方程及雙曲線C2的方程;
(2)在第一象限內(nèi)取雙曲線C2上一點(diǎn)P,直線AP、PB分別交橢圓C1于點(diǎn)M、點(diǎn)N,若△AMN與△PMN的面積相等.①求P點(diǎn)的坐標(biāo) ②求證:
MN
AB
=0
分析:(1)由已知
a2
c
=
25
4
b
a
=
3
5
a2=b2+c2
,解即可;
(2)①由(1)A(-5,0),B(5,0),設(shè)M(x0,y0),利用△AMN與△PMN的面積相等,可得M為AP的中點(diǎn).于是得到P點(diǎn)坐標(biāo)為(2x0+5,2y0),把M、P坐標(biāo)代入c1、c2方程即可解得;
②當(dāng)P為(10,3
3
)
時(shí),利用點(diǎn)斜式得到PB:y=
3
3
10-5
(x-5)
,與橢圓方程聯(lián)立即可解得點(diǎn)N的坐標(biāo),只要與點(diǎn)M的橫坐標(biāo)線段即可.
解答:解:(1)由已知
a2
c
=
25
4
b
a
=
3
5
a2=b2+c2
,解得
a=5
b=3
c=4

∴橢圓的方程為
x2
25
+
y2
9
=1
,雙曲線的方程
x2
25
-
y2
9
=1

(2)①由(1)A(-5,0),B(5,0),設(shè)M(x0,y0),
∵△AMN與△PMN的面積相等,∴M為AP的中點(diǎn).
∴P點(diǎn)坐標(biāo)為(2x0+5,2y0),
把M、P坐標(biāo)代入c1、c2方程得
x
2
0
25
+
y
2
0
9
=1
(2x0+5)
25
-
y
2
0
9
=1

消去y02
x
2
0
+5x0-25=0
,解之得x0=
5
2
x0=-5(舍)

由此可得P(10,3
3
)

②證明:當(dāng)P為(10,3
3
)
時(shí),PB:y=
3
3
10-5
(x-5)
,即y=
3
3
5
(x-5)

代入
x2
25
+
y2
9
=1得:2x2-15x+25=0,x=
5
2
或5(舍)
,
xN=
5
2
,∴xN=xM
∴MN⊥x軸.  即
MN
AB
=0
點(diǎn)評(píng):熟練掌握橢圓與雙曲線的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題轉(zhuǎn)化為方程聯(lián)立得出交點(diǎn)的坐標(biāo)、中點(diǎn)坐標(biāo)公式、直線垂直與數(shù)量積的關(guān)系等是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓C1的中心在原點(diǎn)O,長軸左、右端點(diǎn)M,N在x軸上.橢圓C2的短軸為MN,且C1,C2的離心率都為e.直線l⊥MN.l與C1交于兩點(diǎn),與C2交于兩點(diǎn),這四點(diǎn)按縱坐標(biāo)從大到小依次為A、B、C、D.
(Ⅰ)e=
12
,求|BC|與|AD|的比值;
(Ⅱ)當(dāng)e變化時(shí),是否存在直線l,使得BO∥AN,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖北)如圖,已知橢圓C1與C2的中心在坐標(biāo)原點(diǎn)O,長軸均為MN且在x軸上,短軸長分別為2m,2n(m>n),過原點(diǎn)且不與x軸重合的直線l與C1,C2的四個(gè)交點(diǎn)按縱坐標(biāo)從大到小依次為A,B,C,D,記λ=
mn
,△BDM和△ABN的面積分別為S1和S2
(Ⅰ)當(dāng)直線l與y軸重合時(shí),若S1=λS2,求λ的值;
(Ⅱ)當(dāng)λ變化時(shí),是否存在與坐標(biāo)軸不重合的直線l,使得S1=λS2?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年遼寧省丹東市寬甸二中高二下學(xué)期期末考試數(shù)學(xué)(文) 題型:解答題

(本小題滿分12分)

如圖,已知橢圓C1的中心在原點(diǎn)O,長軸左、右端點(diǎn)M,Nx軸上,橢圓C2的短軸為MN,且C1,C2的離心率都為e,直線l⊥MN,lC1交于兩點(diǎn),與C2交于兩點(diǎn),這四點(diǎn)按縱坐標(biāo)從大到小依次為A,B,C,D
(I)設(shè),求的比值;
(II)當(dāng)e變化時(shí),是否存在直線l,使得BOAN,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年遼寧省招生統(tǒng)一考試文科數(shù)學(xué) 題型:解答題

 

 (本小題滿分12分)

如圖,已知橢圓C1的中心在圓點(diǎn)O,長軸左、右端點(diǎn)M、N在x軸上,橢圓C1的短軸為MN,且C1,C2的離心率都為e,直線l⊥MN,l與C1交于兩點(diǎn),與C1交于兩點(diǎn),這四點(diǎn)按縱坐標(biāo)從大到小依次為A、B、C、D.

(I)設(shè)e=,求|BC|與|AD|的比值;

(II)當(dāng)e變化時(shí),是否存在直線l,使得BO//AN,并說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案