【題目】下圖是2020年2月15日至3月2日武漢市新增新冠肺炎確診病例的折線統(tǒng)計(jì)圖.則下列說(shuō)法不正確的是( )
A.2020年2月19日武漢市新增新冠肺炎確診病例大幅下降至三位數(shù)
B.武漢市在新冠肺炎疫情防控中取得了階段性的成果,但防控要求不能降低
C.2020年2月19日至3月2日武漢市新增新冠肺炎確診病例低于400人的有8天
D.2020年2月15日到3月2日武漢市新增新冠肺炎確診病例最多的一天比最少的一天多1549人
【答案】D
【解析】
根據(jù)圖表中提供的信息,對(duì)應(yīng)各選項(xiàng)即可判斷其真假.
對(duì)于A,由圖可知,2020年2月19日,武漢市新增新冠肺炎確診病例從2月18日的1660人大幅下降至615人,所以A正確;
對(duì)于B,從2020年2月19日起至2月29日,武漢市新增新冠肺炎確診病例大約在300-615之間,3月起繼續(xù)減少,沒(méi)有出現(xiàn)大幅增加,所以B正確;
對(duì)于C,由圖可知,2020年2月19日至3月2日,武漢市新增新冠肺炎確診病例低于400人的有,2月20日,21日,23日,25日,26日,27日,3月1日,2日,共8天,所以C正確;
對(duì)于D,2020年2月15日到3月2日中,武漢市新增新冠肺炎確診病例最多的是2月16日1690例,最少的是3月2日111例,1690-111=1579,所以D不正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是2020年2月15日至3月2日武漢市新增新冠肺炎確診病例的折線統(tǒng)計(jì)圖.則下列說(shuō)法不正確的是( )
A.2020年2月19日武漢市新增新冠肺炎確診病例大幅下降至三位數(shù)
B.武漢市在新冠肺炎疫情防控中取得了階段性的成果,但防控要求不能降低
C.2020年2月19日至3月2日武漢市新增新冠肺炎確診病例低于400人的有8天
D.2020年2月15日到3月2日武漢市新增新冠肺炎確診病例最多的一天比最少的一天多1549人
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:的焦點(diǎn)為,過(guò)焦點(diǎn)做傾斜角為的120°的直線交于,兩點(diǎn),為坐標(biāo)原點(diǎn),.
(1)求拋物線的方程;
(2)過(guò)拋物線焦點(diǎn),且與坐標(biāo)軸不垂直的直線l交拋物線于,兩點(diǎn),,在拋物線上,且,,若,,,四點(diǎn)都在圓上,求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列和的前項(xiàng)和分別為和,且,,,其中為常數(shù).
(1)若,.
①求數(shù)列的通項(xiàng)公式;
②求數(shù)列的通項(xiàng)公式.
(2)若,.求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直三棱柱ABC﹣A1B1C1中,AB⊥BC,BB1BC,D是CC1的中點(diǎn).
(1)證明:B1C⊥平面ABD;
(2)若AB=BC,E是A1C1的中點(diǎn),求二面角A﹣BD﹣E的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年第十三屆女排世界杯共12支參賽球隊(duì),比賽賽制釆取單循環(huán)方式,即每支球隊(duì)進(jìn)行11場(chǎng)比賽,最后靠積分選出最后冠軍.積分規(guī)則如下(比賽采取5局3勝制):比賽中以3—0或3—1取勝的球隊(duì)積3分,負(fù)隊(duì)積0分;而在比賽中以3—2取勝的球隊(duì)積2分,負(fù)隊(duì)積1分.9輪過(guò)后,積分榜上的前2名分別為中國(guó)隊(duì)和美國(guó)隊(duì),中國(guó)隊(duì)積26分,美國(guó)隊(duì)積22分.第10輪中國(guó)隊(duì)對(duì)抗塞爾維亞隊(duì),設(shè)每局比賽中國(guó)隊(duì)取勝的概率為.
(1)第10輪比賽中,記中國(guó)隊(duì)3—1取勝的概率為,求的最大值點(diǎn).
(2)以(1)中的作為的值.
(i)在第10輪比賽中,中國(guó)隊(duì)所得積分為,求的分布列;
(ⅱ)已知第10輪美國(guó)隊(duì)積3分,判斷中國(guó)隊(duì)能否提前一輪奪得冠軍(第10輪過(guò)后,無(wú)論最后一輪即第11輪結(jié)果如何,中國(guó)隊(duì)積分最多)?若能,求出相應(yīng)的概率;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:是無(wú)窮數(shù)列,若存在正整數(shù)k使得對(duì)任意,均有則稱是近似遞增(減)數(shù)列,其中k叫近似遞增(減)數(shù)列的間隔數(shù)
(1)若,是不是近似遞增數(shù)列,并說(shuō)明理由
(2)已知數(shù)列的通項(xiàng)公式為,其前n項(xiàng)的和為,若2是近似遞增數(shù)列的間隔數(shù),求a的取值范圍:
(3)已知,證明是近似遞減數(shù)列,并且4是它的最小間隔數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,己知圓C經(jīng)過(guò)點(diǎn)(,),(,),且與直線相切.
(1)求圓C的方程;
(2)設(shè)P是直線l:x=4上的任意一點(diǎn),過(guò)點(diǎn)P作圓C的切線,切點(diǎn)為M,N.
①求證:直線MN過(guò)定點(diǎn)(記為Q);
②設(shè)直線PQ與圓C交于點(diǎn)A,B,與y軸交于點(diǎn)D.若,,求+的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,已知點(diǎn)到直線的距離為3.
(1)求實(shí)數(shù)的值;
(2)設(shè)是直線上的動(dòng)點(diǎn),在線段上,且滿足,求點(diǎn)軌跡方程,并指出軌跡是什么圖形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com