【題目】已知函數(shù),其中為常數(shù),且.
(1)若,求函數(shù)的表達(dá)式;
(2)在(1)的條件下,設(shè)函數(shù),若在區(qū)間[-2,2]上是單調(diào)函數(shù),求實數(shù)的取值范圍;
(3)是否存在實數(shù)使得函數(shù)在[-1,4]上的最大值是4?若存在,求出的值;若不存在,請說明理由.
【答案】(1);(2)或;(3)或.
【解析】
試題分析:(1)由,可得的值,從而可得函數(shù)的表達(dá)式;
(2),函數(shù)的對稱軸為,根據(jù)在區(qū)間上是單調(diào)函數(shù),可得或,從而可求實數(shù)的取值范圍;(3)的對稱軸為,分類討倫,確定函數(shù)圖象開口向上,函數(shù)在上的單調(diào)性,利用最大值是,建立方程,即可求得結(jié)論.
試題解析:(1)由得,∴,
∴.
由(1)得,該函數(shù)對稱軸為,
若在區(qū)間上是單調(diào)函數(shù),應(yīng)滿足或,解得或,故所求實數(shù)的取值范圍是或.
(3)函數(shù)的對稱軸為,
①當(dāng)時,函數(shù)開口向上,對稱軸,此時在上最大值為,∴,∴,不合題意,舍去.
②當(dāng),函數(shù)開口向下,對稱軸.
(1)若,即時,函數(shù)在的最大值為,
化簡得,解得或,符合題意.
(2)若即時,函數(shù)在單調(diào)遞增,最大值為,∴,不合題意,舍去.
綜上所述存在或滿足函數(shù)在上的最大值是4.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在英語中不同字母出現(xiàn)的頻率彼此不同且相差很大,但同一個字母的使用頻率相當(dāng)穩(wěn)定,有人統(tǒng)計了40多萬個單詞中5個元音字母的使用頻率,結(jié)果如下表所示:
元音字母 | A | E | I | O | U |
頻率 | 7.88% | 12.68% | 7.07% | 7.76% | 2.80% |
(1)從一本英文(小說類)書里隨機(jī)選一頁,統(tǒng)計在這一頁里元音字母出現(xiàn)的頻率;
(2)將你統(tǒng)計得出的頻率與上表中的頻率進(jìn)行比較,結(jié)果是否比較接近?你認(rèn)為存在差異的原因是什么.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近幾年騎車鍛煉越來越受到人們的喜愛,男女老少踴躍參加,我校課外活動小組利用春節(jié)放假時間進(jìn)行社會實踐,對年齡段的人群隨機(jī)抽取人進(jìn)行了一次“你是否喜歡騎車鍛煉”的問卷,將被調(diào)查人員分為“喜歡騎車”和“不喜歡騎車”,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
(1)補(bǔ)全頻率分布直方圖,并的值;
(2)從歲年齡段的“喜歡騎車”中采用分層抽樣法抽取6人參加騎車鍛煉體驗活動,求其中選取2名領(lǐng)隊來自同一組的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其指標(biāo)值來衡量,其指標(biāo)值越大表明質(zhì)量越好,且指標(biāo)值大于或等于102的產(chǎn)品為優(yōu)質(zhì)品.現(xiàn)用兩種新配方(分別稱為配方和配方)做試驗,各生產(chǎn)了100件這種產(chǎn)品,并測量了每件產(chǎn)品的指標(biāo)值,得到了下面的試驗結(jié)果:
配方的頻數(shù)分布表
指標(biāo)值分組 | |||||
頻數(shù) | 8 | 20 | 42 | 22 | 8 |
配方的頻數(shù)分布表
指標(biāo)值分組 | |||||
頻數(shù) | 4 | 12 | 42 | 32 | 10 |
(Ⅰ)分別估計用配方,配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率;
(Ⅱ)已知用配方生產(chǎn)的一件產(chǎn)品的利潤(單位:元)與其指標(biāo)值的關(guān)系式為
估計用配方生產(chǎn)的一件產(chǎn)品的利潤大于0的概率,并求用配方生產(chǎn)的上述產(chǎn)品平均每件的利潤。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點,其離心率為。
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的右頂點為,直線交于兩點(異于點),若在上,且,,證明直線過定點。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線截以原點為圓心的圓所得的弦長為。
(1)求圓的方程;
(2)若直線與圓切于第一象限,且與坐標(biāo)軸交于點,當(dāng)長最小時,求直線的方程;
(3)設(shè)是圓上任意兩點,點關(guān)于軸的對稱點,若直線分別交軸于點和,問是否為定值?若是,請求出該定值;若不是,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】調(diào)查200名50歲以上有吸煙習(xí)慣與患慢性氣管炎的人的情況,獲數(shù)據(jù)如下
患慢性氣管炎 | 未患慢性氣管炎 | 總計 | |
吸煙 | 30 | 100 | |
不吸煙 | 35 | 100 | |
合計 | 105 | 95 | 200 |
(1)表中,的值分別是多少;
(2)試問:有吸煙習(xí)慣與患慢性氣管炎病是否有關(guān)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com