【題目】如圖是某公共汽車(chē)線(xiàn)路收支差額元與乘客量的圖象.由于目前本條線(xiàn)路虧損,公司有關(guān)人員提出了兩種扭虧為贏(yíng)的方案,根據(jù)圖上點(diǎn)、點(diǎn)以及射線(xiàn)上的點(diǎn)的實(shí)際意義,用文字說(shuō)明圖方案是______,圖方案是______

【答案】降低成本,票價(jià)不變 增加票價(jià)

【解析】

觀(guān)察函數(shù)的圖象可知,函數(shù)圖象上的橫坐標(biāo)表示乘客量,縱坐標(biāo)表示收支差額,結(jié)合圖象可得出結(jié)論.

由圖可知,點(diǎn)表示無(wú)人乘車(chē)時(shí)收支差額為元,點(diǎn)表示有人乘車(chē)時(shí)收支差額為零,線(xiàn)段上的點(diǎn)表示虧損,延長(zhǎng)線(xiàn)上的點(diǎn)表示盈利.

對(duì)于圖而言,與圖相比,兩個(gè)一次函數(shù)的一次項(xiàng)系數(shù)沒(méi)變,但無(wú)人乘車(chē)時(shí)收支差額變?yōu)?/span>元,差距在減少,則圖的方案是降低成本,票價(jià)不變;

對(duì)于圖而言,與圖相比,圖對(duì)應(yīng)的一次函數(shù)一次項(xiàng)系數(shù)增大了,但無(wú)人乘車(chē)時(shí)收支差額仍是元,則圖的方案是增加票價(jià).

故答案為:降低成本,票價(jià)不變;增加票價(jià).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】江蘇省南通市2018屆高三最后一卷 --- 備用題數(shù)學(xué)試題已知函數(shù),其中.

(1)當(dāng)時(shí),求函數(shù)處的切線(xiàn)方程;

(2)若函數(shù)存在兩個(gè)極值點(diǎn),求的取值范圍;

(3)若不等式對(duì)任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的且以2為周期的偶函數(shù),當(dāng)0≤x≤1時(shí),f(x)=x2 , 如果直線(xiàn)y=x+a與曲線(xiàn)y=f(x)恰有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)a的值為(
A.2k(k∈Z)
B.2k或2k+ (k∈Z)
C.0
D.2k或2k﹣ (k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,直線(xiàn)交橢圓兩點(diǎn).

(1)求橢圓的焦點(diǎn)坐標(biāo)及長(zhǎng)軸長(zhǎng);

(2)求以線(xiàn)段為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在上的奇函數(shù),且.若對(duì)任意的,,都有.

1)判斷函數(shù)的單調(diào)性,并說(shuō)明理由;

2)若,求實(shí)數(shù)的取值范圍;.

3)若不等式對(duì)任意都恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為 (其中α為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為ρ=4sinθ.
(1)若A,B為曲線(xiàn)C1 , C2的公共點(diǎn),求直線(xiàn)AB的斜率;
(2)若A,B分別為曲線(xiàn)C1 , C2上的動(dòng)點(diǎn),當(dāng)|AB|取最大值時(shí),求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)為二次函數(shù),且f(x-1)+f(x)=2x2+4.

(1)求f(x)的解析式;

(2)當(dāng)x∈[t,t+2],t∈R時(shí),求函數(shù)f(x)的最小值(用t表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a3是a2與a6的等比中項(xiàng),2a1+3a2=16.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2a1+log2a2+…+log2an , 求數(shù)列{ }的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為打入國(guó)際市場(chǎng),決定從、兩種產(chǎn)品中選擇一種進(jìn)行投資生產(chǎn),已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬(wàn)美元)

年固定成本

每件產(chǎn)品成本

每件產(chǎn)品銷(xiāo)售價(jià)

每年最多可生產(chǎn)的件數(shù)

A產(chǎn)品

20

10

200

B產(chǎn)品

40

8

18

120

其中年固定成本與年生產(chǎn)的件數(shù)無(wú)關(guān),是待定常數(shù),其值由生產(chǎn)產(chǎn)品的原材料決定,預(yù)計(jì),另外,年銷(xiāo)售B產(chǎn)品時(shí)需上交萬(wàn)美元的特別關(guān)稅,假設(shè)生產(chǎn)出來(lái)的產(chǎn)品都能在當(dāng)年銷(xiāo)售出去.

(1)求該廠(chǎng)分別投資生產(chǎn)A、兩種產(chǎn)品的年利潤(rùn)與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)之間的函數(shù)關(guān)系,并求出其定義域;

(2)如何投資才可獲得最大年利潤(rùn)?請(qǐng)?jiān)O(shè)計(jì)相關(guān)方案.

查看答案和解析>>

同步練習(xí)冊(cè)答案