設m、n是不同的直線,α、β、γ是不同的平面,有以下四個命題:
(1)
α∥β
α∥γ
?β∥γ

(2)
α⊥β
m∥α
?m⊥β

(3)
m⊥α
m∥β
?α⊥β

(4)
m∥n
n?α
?m∥α
,
其中假命題有
 
分析:根據(jù)有關(guān)定理中的諸多條件,對每一個命題進行逐一進行是否符合定理條件去判定,將由條件可能推出的結(jié)論進行逐一列舉說明.
解答:解:(1)若α∥β,α∥γ,則β∥γ,根據(jù)面面平行的性質(zhì)定理和判定定理可證得,故正確
(2)若m∥α,α⊥β則m∥β或m與β相交,故不正確
(3)∵m∥β∴β內(nèi)有一直線l與m平行,而m⊥α,則l⊥α,l?β,根據(jù)面面垂直的判定定理可知α⊥β,故正確
(4)m∥n,n?α則m?α或m∥α,故不正確
故答案為:(2)(4)
點評:本題主要考查了空間中直線與平面之間的位置關(guān)系,以及命題的真假判斷與應用,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

8、設m、n是不同的直線,α、β、γ是不同的平面,有以下四個命題:①若α∥β,α∥γ,則β∥γ②若α⊥β,m∥α,則m⊥β③若m⊥α,m∥β,則α⊥β④若m∥n,?n?α,則m∥α其中真命題的序號是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

4、設m,n是不同的直線,是不同的平面,則下列四個命題:①若α∥β,m?α,則m∥β,②若m∥α,n?α,則m∥n,③若α⊥β,m∥α,則m⊥β,④若m⊥α,m∥β,則α⊥β
其中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

6、設m、n是不同的直線,α、β、γ是不同的平面,有以下四個命題:
(1)若n∥α,m∥β,α∥β,則n∥m;   (2)若m⊥α,n∥α,則m⊥n
(3)若α⊥γ,β⊥γ,則α∥β;         (4)若α∥β,β∥γ,m⊥α,則m⊥γ
其中真命題的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設m、n是不同的直線,α、β、γ是不同的平面,有以下四個命題:
(1)
α∥β
α∥γ
?β∥γ

(2)
α⊥β
m∥α
?m⊥β
;
(3)
m⊥α
m∥β
?α⊥β

(4)
m∥n
n?α
?m∥α

其中,假命題是( 。
A、(1)(2)
B、(2)(3)
C、(1)(3)
D、(2)(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設m、n是不同的直線,α、β是不同的平面,有以下四個命題:
①若m⊥α,n⊥α,則m∥n; 
②若α⊥β,m∥α,則m⊥β;
③若m上α,m⊥n,則n∥α;    
④若n⊥α,n⊥β,則β∥α.
其中,真命題的序號是(  )

查看答案和解析>>

同步練習冊答案