【題目】已知定義域為(0,+∞)的函數(shù)f(x)滿足:(1)對任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)當x∈(1,2]時,f(x)=2﹣x. 給出如下結論:
①對任意m∈Z,有f(2m)=0;
②函數(shù)f(x)的值域為[0,+∞);
③存在n∈Z,使得f(2n+1)=9;
正確的有( )
A.①②③
B.①②
C.①③
D.②③
【答案】B
【解析】解:①f(2m)=f(22m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,正確; ②取x∈(2m , 2m+1),
則 ∈(1,2];f( )=2﹣ ,
f( )=…=2mf( )=2m+1﹣x
從而f(x)∈[0,+∞),正確
③f(2n+1)=2n+1﹣2n﹣1,假設存在n使f(2n+1)=9,
即存在x1 , x2 , 2x1﹣2x2=10,
又∵2x變化如下:2,4,8,16,32,顯然不存在滿足條件的x1 , x2 , 所以該命題錯誤;
綜合有正確的序號是①②.
故選:B.
【考點精析】根據(jù)題目的已知條件,利用命題的真假判斷與應用的相關知識可以得到問題的答案,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系.
科目:高中數(shù)學 來源: 題型:
【題目】用數(shù)學歸納法證明1+2+3+…+n2= ,則當n=k+1時左端應在n=k的基礎上加上( )
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的右焦點為,右頂點為.已知,其中為原點, 為橢圓的離心率.
(1)求橢圓的方程及離心率的值;
(2)設過點的直線與橢圓交于點(不在軸上),垂直于的直線與交于點,與軸交于點.若,且,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三4班有50名學生進行了一場投籃測試,其中男生30人,女生20人.為了了解其投籃成績,甲、乙兩人分別都對全班的學生進行編號(1﹣50號),并以不同的方法進行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.若此次投籃測試的成績大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,如表是甲、乙兩人分別抽取的樣本數(shù)據(jù): 甲抽取的樣本數(shù)據(jù)
編號 | 2 | 7 | 12 | 17 | 22 | 27 | 32 | 37 | 42 | 47 |
性別 | 男 | 女 | 男 | 男 | 女 | 男 | 女 | 男 | 女 | 女 |
投籃成 績 | 90 | 60 | 75 | 80 | 83 | 85 | 75 | 80 | 70 | 60 |
乙抽取的樣本數(shù)據(jù)
編號 | 1 | 8 | 10 | 20 | 23 | 28 | 33 | 35 | 43 | 48 |
性別 | 男 | 男 | 男 | 男 | 男 | 男 | 女 | 女 | 女 | 女 |
投籃成 績 | 95 | 85 | 85 | 70 | 70 | 80 | 60 | 65 | 70 | 60 |
(Ⅰ)在乙抽取的樣本中任取3人,記投籃優(yōu)秀的學生人數(shù)為X,求X的分布列和數(shù)學期望.
(Ⅱ)請你根據(jù)乙抽取的樣本數(shù)據(jù)完成下列2×2列聯(lián)表,判斷是否有95%以上的把握認為投籃成績和性別有關?
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男 | |||
女 | |||
合計 | 10 |
(Ⅲ)判斷甲、乙各用何種抽樣方法,并根據(jù)(Ⅱ)的結論判斷哪種抽樣方法更優(yōu)?說明理由.
下面的臨界值表供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(參考公式:K2= ,其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設正項數(shù)列的前項和為,且滿足, , ,各項均為正數(shù)的等比數(shù)列滿足.
(Ⅰ)求數(shù)列和的通項公式;
(Ⅱ)若,數(shù)列的前項和為.若對任意, ,均有恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以原點O為極點,以x軸正半軸為極軸,曲線C的極坐標方程為ρ= . (Ⅰ)將曲線C的極坐標方程化為直角坐標方程;
(Ⅱ)過點P(0,2)作斜率為1直線l與曲線C交于A,B兩點,試求 + 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣kx且f(x)在區(qū)間(2,+∞)上為增函數(shù).
(1)求k的取值范圍;
(2)若函數(shù)f(x)與g(x)的圖象有三個不同的交點,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為常數(shù),對任意,均有恒成立.下列說法:
①的周期為;
②若為常數(shù))的圖像關于直線對稱,則;
③若且,則必有;
④已知定義在上的函數(shù)對任意均有成立,且當時, ;又函數(shù)為常數(shù)),若存在使得成立,則的取值范圍是.其中說法正確的是____.(填寫所有正確結論的編號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在R上定義運算:xy=x(1﹣y),若不等式(x﹣a)(x﹣b)>0的解集是(2,3),則a+b的值為( )
A.1
B.2
C.4
D.8
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com