精英家教網 > 高中數學 > 題目詳情

【題目】如圖,已知四棱錐,底面為菱形, 平面 , 分別是的中點.

(Ⅰ)證明:

(Ⅱ)若上的動點, 與平面所成最大角的正切值為,求二面角的余弦值.

【答案】(1)見解析(2)

【解析】試題分析:(Ⅰ)由條件,可證菱形中, ,再由線面垂直可得線線垂直得出,進一步得出平面,再由線面垂直的性質,可證線線垂直。á颍┯伤o條件,建立以為坐標原點空間直角坐標系,寫出空間各點坐標,求出二面角的二面的法向量,由法向量的夾角與二面角之間的關系求出其余弦值.

試題解析:(Ⅰ)證明:由四邊形為菱形, ,可得為正三角形.

因為的中點,所以

,因此

因為平面, 平面,所以

平面, 平面,

所以平面.又平面,所以

(Ⅱ)解:設, 上任意一點,連接

由(Ⅰ)知平面, 與平面所成的角.

中, ,所以當最短時, 最大,

即當時, 最大.此時,

因此.又,所以,所以

方法1:因為平面 平面,

所以平面平面.過,由面面垂直的性質定理,

平面,過,連,則,此時平面,

顯然,則為二面角的平面角,

中,∵,∴, ,

中,∵,又的中點,∴,

因此在中, ,又,

中, ,即所求二面角的余弦值為

方法2:由(Ⅰ)知兩兩垂直,以為坐標原點,建立如圖所示的空間直角坐標系,

分別為的中點,所以 ,所以

設平面的一法向量為,則 因此

,則,因為 , ,所以平面,

為平面的一法向量.又,所以.因為二面角為銳角,所以所求二面角的余弦值為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中, 平面, , , , , .

(1)求證: 平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列各組函數f(x)與g(x)的圖象相同的是(
A.f(x)=x,g(x)=( 2
B.f(x)=x2 , g(x)=(x+1)2
C.f(x)=1,g(x)=x0
D.f(x)=|x|,g(x)=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直角梯形中,,的中點,將沿折起,使得平面.

(Ⅰ)求證:平面平面 ;

(Ⅱ)若的中點,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知冪函數y= (m∈Z)的圖象與x軸,y軸沒有交點,且關于y軸對稱,則m=(
A.1
B.0,2
C.﹣1,1,3
D.0,1,2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓和直線

1求證:不論取什么值,直線和圓C總相交;

(2)求直線被圓C截得的最短弦長及此時的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校對高二年級選學生物的學生的某次測試成績進行了統計,隨機抽取了名學生的成績作為樣,根據此數據作出了頻率分布統計表和頻率分布直方如下

(1)求表中的值和頻率分布直方圖中的值;

(2)如果用分層抽樣的方法,從樣本成績在的學生中共抽取人,再從人中選人,

求這人成績在的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解消費者購物情況,某購物中心在電腦小票中隨機抽取張進行統計,將結果分成6組,分別是: , ,制成如下所示的頻率分布直方圖(假設消費金額均在元的區(qū)間內).

1)若在消費金額為元區(qū)間內按分層抽樣抽取6張電腦小票,再從中任選2張,求這2張小票來自元和元區(qū)間(兩區(qū)間都有)的概率;

(2)為做好春節(jié)期間的商場促銷活動,商場設計了兩種不同的促銷方案.

方案一:全場商品打八五折.

方案二:全場購物滿100元減20元,滿300元減80元,滿500元減120元,以上減免只取最高優(yōu)惠,不重復減免.利用直方圖的信息分析:哪種方案優(yōu)惠力度更大,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,直線的參數方程為為參數),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的極坐標方程為,圓與直線交于兩點,點的直角坐標為

(1)將直線的參數方程化為普通方程,圓的極坐標方程化為直角坐標方程;

(2)求的值.

查看答案和解析>>

同步練習冊答案