【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩(shī)詞知識(shí)競(jìng)賽為主的《中國(guó)詩(shī)詞大會(huì)》火爆熒屏。將中學(xué)組和大學(xué)組的參賽選手按成績(jī)分為優(yōu)秀、良好、一般三個(gè)等級(jí),隨機(jī)從中抽取了100名選手進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級(jí)人數(shù)的條形圖.

(Ⅰ)若將一般等級(jí)和良好等級(jí)合稱(chēng)為合格等級(jí),根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否有95﹪的把握認(rèn)為選手成績(jī)優(yōu)秀與文化程度有關(guān)?

優(yōu)秀

合格

合計(jì)

大學(xué)組

中學(xué)組

合計(jì)

注: ,其中.

0.10

0.05

0. 005

2.706

3.841

7.879

(Ⅱ)若江西參賽選手共80人,用頻率估計(jì)概率,試估計(jì)其中優(yōu)秀等級(jí)的選手人數(shù);

(Ⅲ)如果在優(yōu)秀等級(jí)的選手中取4名,在良好等級(jí)的選手中取2名,再?gòu)倪@6人中任選3人組成一個(gè)比賽團(tuán)隊(duì),求所選團(tuán)隊(duì)中的有2名選手的等級(jí)為優(yōu)秀的概率.

【答案】(Ⅰ)見(jiàn)解析; (Ⅱ60人;(Ⅲ) .

【解析】試題分析:Ⅰ)由條形圖可知2×2列聯(lián)表,計(jì)算k2,與臨界值比較,即可得出結(jié)論;

Ⅱ)由條形圖知,所抽取的100人中,優(yōu)秀等級(jí)有75人,故優(yōu)秀率為,可得優(yōu)秀等級(jí)的選手人數(shù);

(Ⅲ)記優(yōu)秀等級(jí)中4人分別為A,B,C,D,良好等級(jí)中的兩人為E,F(xiàn),利用古典概型求概率公式求解即可.

試題解析:

(Ⅰ)由條形圖可知2×2列聯(lián)表如下

優(yōu)秀

合格

合計(jì)

大學(xué)組

45

10

55

中學(xué)組

30

15

45

合計(jì)

75

25

100

沒(méi)有95﹪的把握認(rèn)為優(yōu)秀與文化程度有關(guān).

(Ⅱ)由條形圖知,所抽取的100人中,優(yōu)秀等級(jí)有75人,故優(yōu)秀率為.

所有參賽選手中優(yōu)秀等級(jí)人數(shù)約為人.

(Ⅲ)記優(yōu)秀等級(jí)中4人分別為A,B,C,D,良好等級(jí)中的兩人為E,F(xiàn),則任取3人的取法有ABC,ABD,ABE,ABF,ACD,ACE,ACF,ADE,ADF,AEF,BCD,BCE,BCF,BDE,BDF,BEF,CDE,CDF,CEF,DEF共20種,其中有2名選手的等級(jí)為優(yōu)秀的有ABE,ABF,ACE,ACF,ADE,ADF,BCE,BCF,BDE,BDF,CDE,CDF共12種,所以所選團(tuán)隊(duì)中的有2名選手的等級(jí)為優(yōu)秀的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓 的左右焦點(diǎn)分別為的,離心率為;過(guò)拋物線(xiàn)焦點(diǎn)的直線(xiàn)交拋物線(xiàn)于、兩點(diǎn),當(dāng)時(shí), 點(diǎn)在軸上的射影為。連結(jié)并延長(zhǎng)分別交、兩點(diǎn),連接 的面積分別記為, ,設(shè).

)求橢圓和拋物線(xiàn)的方程;

)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(I)求函數(shù)的對(duì)稱(chēng)軸方程;

(II)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,然后再向左平移個(gè)單位,得到函數(shù)的圖象.若分別是△ABC三個(gè)內(nèi)角A,BC的對(duì)邊,a=2,c=4,且,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)的解析式滿(mǎn)足
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)a=1時(shí),試判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性,并加以證明;
(3)當(dāng)a=1時(shí),記函數(shù) ,求函數(shù)g(x)在區(qū)間 上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】分層抽樣是將總體分成互不交叉的層,然后按照一定的比例,從各層獨(dú)立地抽取一定數(shù)量的個(gè)體,組成一個(gè)樣本的抽樣方法;在《九章算術(shù)》第三章“衰分”中有如下問(wèn)題:“今有甲持錢(qián)五百六十,乙持錢(qián)三百五十,丙持錢(qián)一百八十,凡三人俱出關(guān),關(guān)稅百錢(qián).欲以錢(qián)多少衰出之,問(wèn)各幾何?”其譯文為:今有甲持560錢(qián),乙持350錢(qián),丙持180錢(qián),甲、乙、丙三人一起出關(guān),關(guān)稅共100錢(qián),要按照各人帶錢(qián)多少的比例進(jìn)行交稅,問(wèn)三人各應(yīng)付多少稅?則下列說(shuō)法錯(cuò)誤的是( )

A. 甲應(yīng)付錢(qián) B. 乙應(yīng)付錢(qián)

C. 丙應(yīng)付錢(qián) D. 三者中甲付的錢(qián)最多,丙付的錢(qián)最少

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為

求曲線(xiàn)的直角坐標(biāo)方程,并指出其表示何種曲線(xiàn);

設(shè)直線(xiàn)與曲線(xiàn)交于兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,

試求當(dāng)時(shí), 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)原點(diǎn)的動(dòng)直線(xiàn)與圓相交于不同的兩點(diǎn)

1求線(xiàn)段的中點(diǎn)的軌跡的方程;

2是否存在實(shí)數(shù),使得直線(xiàn)與曲線(xiàn)只有一個(gè)交點(diǎn)?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓錐曲線(xiàn) 為參數(shù))和定點(diǎn), 是此圓錐曲線(xiàn)的左、右焦點(diǎn).

(1)以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,求直線(xiàn)的極坐標(biāo)方程;

(2)經(jīng)過(guò)且與直線(xiàn)垂直的直線(xiàn)交此圓錐曲線(xiàn), 兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖像經(jīng)過(guò)點(diǎn),曲線(xiàn)在點(diǎn)處的切線(xiàn)恰好與直線(xiàn)垂直.

(1)求實(shí)數(shù)的值;

(2)求在函數(shù)圖像上任意一點(diǎn)處切線(xiàn)的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案