【題目】已知圓與圓,點在圓上,點在圓上.
(1)求的最小值;
(2)直線上是否存在點,滿足經(jīng)過點由無數(shù)對相互垂直的直線和,它們分別與圓和圓相交,并且直線被圓所截得的弦長等于直線被圓所截得的弦長?若存在,求出點的坐標(biāo);若不存在,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點,焦點在軸上的橢圓過點,離心率為.
(1)求橢圓的方程;
(2)直線過橢圓的左焦點,且與橢圓交于兩點,若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大理石工廠初期花費98萬元購買磨大理石刀具,第一年需要各種費用12萬元,從第二年起,每年所需費用比上一年增加4萬元,該大理石加工廠每年總收入50萬元.
(1)到第幾年末總利潤最大,最大值是多少?
(2)到第幾年末年平均利潤最大,最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1)且與x軸有唯一的交點(﹣1,0).
(1)求f(x)的表達式;
(2)在(1)的條件下,設(shè)函數(shù)F(x)=f(x)﹣mx,若F(x)在區(qū)間[﹣2,2]上是單調(diào)函數(shù),求實數(shù)m的取值范圍;
(3)設(shè)函數(shù)g(x)=f(x)﹣kx,x∈[﹣2,2],記此函數(shù)的最小值為h(k),求h(k)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各組函數(shù)中表示同一函數(shù)的是( )
①f(x)= 與g(x)=x
②f(x)=|x|與g(x)=
③f(x)=x0與g(x)=
④f(x)=x2﹣2x﹣1與g(t)=t2﹣2t﹣1.
A.①③
B.②③
C.③④
D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視臺舉行一個比賽類型的娛樂節(jié)目, 兩隊各有六名選手參賽,將他們首輪的比賽成績作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示,為了增加節(jié)目的趣味性,主持人故意將隊第六位選手的成績沒有給出,并且告知大家隊的平均分比隊的平均分多4分,同時規(guī)定如果某位選手的成績不少于21分,則獲得“晉級”.
(1)根據(jù)莖葉圖中的數(shù)據(jù),求出隊第六位選手的成績;
(2)主持人從隊所有選手成績中隨機抽2個,求至少有一個為“晉級”的概率;
(3)主持人從兩隊所有選手成績分別隨機抽取2個,記抽取到“晉級”選手的總?cè)藬?shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)一種機器的固定成本為0.5萬元,但每生產(chǎn)1百臺時,又需可變成本(即另增加投入)0.25萬元.市場對此商品的年需求量為5百臺,銷售的收入(單位:萬元)函數(shù)為:R(x)=5x﹣ x2(0≤x≤5),其中x是產(chǎn)品生產(chǎn)的數(shù)量(單位:百臺).
(1)將利潤表示為產(chǎn)量的函數(shù);
(2)年產(chǎn)量是多少時,企業(yè)所得利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1,F2分別是橢圓E: (a>b>0)的左、右焦點,過點F1的直線交橢圓E于A,B兩點,|AF1|=3|BF1|,若cos∠AF2B=,則橢圓E的離心率為(。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com